IV Examples

Yuta Toyama
May 24 ${ }^{\text {th }}, 2019$

Example 1: Wage regression

- Consider a regression model

$$
\log \left(w_{a g e}\right)
$$

$$
=\beta_{0}+\beta_{1} \text { educ }_{i}+\beta_{2} \text { exper }_{i}+\beta_{3} \text { ability }_{i}+u_{i}
$$

- ability $_{i}$

$$
\equiv \epsilon_{i}
$$

- Not observed in data \rightarrow part of error term ϵ_{i}
- Correlated with $e d u c_{i}$
- Leads to endogeneity issue. Biased estimates of β
- How to get rid of bias of β_{1} ?
\rightarrow Use instrumental variable estimator!

Idea of Instrumental Variable (IV)

- Consider $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$
- x_{i} : endogenous variable. $\operatorname{Cor}\left(x_{i}, \epsilon_{i}\right) \neq 0$
- Instrumental variable (IV) z_{i}
- $\operatorname{Cor}\left(z_{i}, \epsilon_{i}\right)=0$ and $\operatorname{Cor}\left(z_{i}, x_{i}\right) \neq 0$
indirect effect (bias)

Idea:

- Pick variation of x_{i} that is explained by z_{i}.
- Use this variation to explain y_{i} and estimate β_{1}.

Two Conditions for IV and Example

1. Independence: Uncorrelated with error term
2. Relevance: Correlated with endogenous variable

- Example:

$$
\log \left(\text { wage }_{i}\right)=\beta_{0}+\beta_{1} \text { educ }_{i}+\beta_{2} \text { exper }_{i}+\epsilon_{i}
$$

- educ c_{i} is correlated with ϵ_{i} (through unobserved ability).
- IV: father's education fathereduc ${ }_{i}$
- Worker's ability $\left(\epsilon_{i}\right)$ is affected by her education, not her father's education. \rightarrow uncorrelated with ϵ_{i}.
- More educated father is likely to invest in education of his children. \rightarrow correlated with $e d u c_{i}$

Example: Wage regressions (MROZ.dta)
$\log \left(\right.$ wage $\left._{i}\right)=\beta_{0}+\beta_{1}$ educ $_{i}+\beta_{2}$ exper $_{i}+\epsilon_{i}$
IV: father's education (fathereduc c_{i})

- OLS might have an upward bias:
- Education level is positively correlated with ability.
- OLS: 1 additional year of schooling $\rightarrow 11 \%$ increase in wage.
- IV: 7.5\% increase in wage. IV helps to eliminate the upward bias.

Dependent variable: \log (wage)		
	OLS	IV
educ	0.109	0.075
	(0.013)	(0.036)
exper	0.016	0.016
	(0.004)	(0.004)
constant	-0.400	0.036
	(0.183)	(0.466)
Observations	428	428
R-squared	0.15	0.14

Example 2: Measurement Error

- Consider the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, x_{i}^{*}=x_{i}+v_{i}
$$

- We observe $\left(y_{i}, x_{i}^{*}\right)$
- The regression equation

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}^{*}+\left(\epsilon_{i}-\beta_{1} v_{i}\right)
$$

- Consider the second measurement with error

$$
z_{i}=x_{i}^{*}+u_{i}
$$

where u_{i} is a classical measurement error. z_{i} can be used as an IV.

- Example: Ashenfelter and Krueger (1994). Each twin was asked about his or her sibling's years of education: a second measure that can be used as an IV for self-reported education.

Example 3: Demand and Supply (Simultaneous equation)

- Let t be an index for "market" (geographic and/or time)
- Demand equation:

$$
q_{t}=\alpha_{0}+\alpha_{1} p_{t}+\alpha_{2} Y_{t}+\epsilon_{t}^{d}
$$

where Y_{t} is demand shifter (GDP, income,etc)

- Supply equation:

$$
q_{t}=\beta_{0}+\beta_{1} p_{t}+\beta_{2} w_{t}+\epsilon_{t}^{S}
$$

where w_{t} is cost shifter (oil price, wage, etc..)

- Y_{t} as an IV for p_{t} in supply equation
- w_{t} as an IV for p_{t} in demand equation

Demand estimation from Ryan (2012, Econometrica)

- Estimate the demand for cement in market j in year t

$$
\log \left(Q_{j t}\right)=\alpha_{0}+\alpha_{1} \log \left(P_{j t}\right)+\alpha_{3} X_{j t}+\epsilon_{j t}
$$

- Panel data!
- IV: wage, electricity price, coal price, gas price
- Elasticity is under-estimated in OLS.

	[1]		[2]		[3]		[4]	
	Coef	SE	Coef	SE	Coef	SE	Coef	SE
log(price)	-1.04	0.21	-2.69	0.31	-0.66	0.14	-1.77	0.24
Log(population)					0.44	0.03	0.38	0.03
Constant	12.15	0.85	19.07	1.29	3.63	0.72	9.20	1.28
Method	OLS	IV	OLS	IV				
Sample size	483	483	483	483				

$1^{\text {st }}$ stage regression

- Regress endogenous variable on IV and exogenous variables.

```
reg logp gas96 wage96 elec96 coal96 logpop, robust
```


