IV Examples

Yuta Toyama May 24th, 2019

Example 1: Wage regression

Consider a regression model

 $log(wage_i) = \beta_0 + \beta_1 educ_i + \beta_2 exper_i + \beta_3 ability_i + u_i$

 $\equiv \epsilon_i$

- *ability*_i
 - Not observed in data \rightarrow part of error term ϵ_i
 - Correlated with *educ*_i
 - Leads to endogeneity issue. Biased estimates of β
- How to get rid of bias of eta_1 ?

 \rightarrow Use instrumental variable estimator!

Idea of Instrumental Variable (IV)

- Consider $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
 - x_i : endogenous variable. $Cor(x_i, \epsilon_i) \neq 0$
- Instrumental variable (IV) z_i
 - $Cor(z_i, \epsilon_i) = 0$ and $Cor(z_i, x_i) \neq 0$

Idea:

- Pick variation of x_i that is explained by z_i.
- Use this variation to explain y_i and estimate β_1 .

Two Conditions for IV and Example

- 1. Independence: Uncorrelated with error term
- 2. Relevance: Correlated with endogenous variable
- Example:

 $\log(wage_i) = \beta_0 + \beta_1 educ_i + \beta_2 exper_i + \epsilon_i$

- $educ_i$ is correlated with ϵ_i (through unobserved ability).
- IV: father's education *fathereduc*_i
 - Worker's ability (ϵ_i) is affected by her education, not her father's education. \rightarrow uncorrelated with ϵ_i .
 - More educated father is likely to invest in education of his children. → correlated with educ_i

Example: Wage regressions (MROZ.dta)

 $\log(wage_i) = \beta_0 + \beta_1 educ_i + \beta_2 exper_i + \epsilon_i$ IV: father's education (*fathereduc*_i)

- OLS might have an upward bias:
 - Education level is positively correlated with ability.
- OLS: 1 additional year of schooling \rightarrow 11% increase in wage.
- IV: 7.5% increase in wage. IV helps to eliminate the upward bias.

Dependent variable: log(wage)

	OLS	IV
educ	0.109	0.075
	(0.013)	(0.036)
exper	0.016	0.016
	(0.004)	(0.004)
constant	-0.400	0.036
	(0.183)	(0.466)
Observations	428	428
R-squared	0.15	0.14

Example 2: Measurement Error

Consider the model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ x_i^* = x_i + \nu_i$$

- We observe (y_i, x_i^*)
- The regression equation

$$y_i = \beta_0 + \beta_1 x_i^* + (\epsilon_i - \beta_1 v_i)$$

• Consider the second measurement with error

$$z_i = x_i^* + u_i$$

where u_i is a classical measurement error. z_i can be used as an IV.

 Example: Ashenfelter and Krueger (1994). Each twin was asked about his or her sibling's years of education: a second measure that can be used as an IV for self-reported education. Example 3: Demand and Supply (Simultaneous equation)

- Let t be an index for "market" (geographic and/or time)
- Demand equation:

 $q_t = \alpha_0 + \alpha_1 p_t + \alpha_2 Y_t + \epsilon_t^d$

where Y_t is **demand shifter** (GDP, income, etc)

• Supply equation:

 $q_t = \beta_0 + \beta_1 p_t + \beta_2 w_t + \epsilon_t^s$

where w_t is **cost shifter** (oil price, wage, etc..)

- Y_t as an IV for p_t in supply equation
- w_t as an IV for p_t in demand equation

Demand estimation from Ryan (2012, Econometrica)

- Estimate the demand for cement in market j in year t $\log(Q_{jt}) = \alpha_0 + \alpha_1 \log(P_{jt}) + \alpha_3 X_{jt} + \epsilon_{jt}$
 - Panel data!
- IV: wage, electricity price, coal price, gas price
- Elasticity is under-estimated in OLS.

	[1]		[2]		[3]		[4]	
	Coef	SE	Coef	SE	Coef	SE	Coef	SE
log(price)	-1.04	0.21	-2.69	0.31	-0.66	0.14	-1.77	0.24
Log(population)					0.44	0.03	0.38	0.03
Constant	12.15	0.85	19.07	1.29	3.63	0.72	9.20	1.28
Method	OLS		IV		OLS		IV	
Sample size	483		483		483		483	

1st stage regression

Linear regression

Regress endogenous variable on IV and exogenous variables. reg logp gas96 wage96 elec96 coal96 logpop, robust

Number of obs	=	483
F(5, 477)	=	35.28
Prob > F	=	0.0000
R-squared	=	0.2844
Root MSE	=	.16336

logp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gas96	.03786	.0036738	10.31	0.000	.0306411	.0450789
wage96	.0013112	.0023254	0.56	0.573	003258	.0058804
elec96	2668457	.0385111	-6.93	0.000	3425181	1911733
coal96	.0329132	.004789	6.87	0.000	.0235029	.0423234
logpop	0157024	.0116415	-1.35	0.178	0385774	.0071726
_cons	4.807489	.1881122	25.56	0.000	4.437858	5.17712

test gas96 = wage96 = elec96 = coal96 = 0

0.0000

(1) gas96 - wage96 = 0 (2) gas96 - elec96 = 0 (3) gas96 - coal96 = 0 (4) gas 96 = 0 F(4, 477) =35.96

Prob > F =