R Basics 1

Instructor: Yuta Toyama

Last updated: 2020-03-30

Section 1

Data

Acknowledgement

This note is largely based on Applied Statistics with R. https://daviddalpiaz.github.io/appliedstats/

Data Types

R has a number of basic data types.

- Numeric
- Also known as Double. The default type when dealing with numbers.
- Examples: 1, 1.0, 42.5
- Logical
- Two possible values: TRUE and FALSE
- You can also use T and F , but this is not recommended.
- NA is also considered logical.
- Character
- Examples: "a", "Statistics", "1 plus 2."

Data Structures

- R also has a number of basic data structures.
- A data structure is either
- homogeneous (all elements are of the same data type)
- heterogeneous (elements can be of more than one data type).

Dimension	Homogeneous	Heterogeneous
1	Vector	List
2	Matrix	Data Frame
$3+$	Array	

Section 2

Vector

Vectors

Basics of vectors

- Many operations in R make heavy use of vectors.
- Vectors in R are indexed starting at 1.
- The most common way to create a vector in R is using the c() function, which is short for "combine." "
$c(1,3,5,7,8,9)$
\#\# [1] 135789

Assignment

- If we would like to store this vector in a variable we can do so with the assignment operator $=$.
- The variable x now holds the vector we just created, and we can access the vector by typing x.

```
x = c(1, 3, 5, 7, 8, 9)
X
## [1] 1 3 5 7 8 9
# The following does the same thing.
x <- c(1, 3, 5, 7, 8, 9)
X
## [1] 1 3 5 7 8 9
```

- The operator = and <- work as an assignment operator.
- You can use both. This does not matter usually.
- If you are interested in the weird cases where the difference matters, check out The R Inferno.
- In R code the line starting with \# is comment, which is ignored when you run the fode.

A sequence of numbers.

- The quickest and easiest way to do this is with the : operator, which creates a sequence of integers between two specified integers.
($\mathrm{y}=1: 100$)

\#\#	$[1]$	1	2	3	4	5	6	7	8	9	10	11	12	13
\#\#	$[19]$	19	20	21	22	23	24	25	26	27	28	29	30	31
\#\#	$[37]$	37	38	39	40	41	42	43	44	45	46	47	48	49
\#\#	$[55]$	55	56	57	58	59	60	61	62	63	64	65	66	67
\#\#	$[73]$	73	74	75	76	77	78	79	80	81	82	83	84	85
\#\#	$[91]$	91	92	93	94	95	96	97	98	99	100			

- By putting parentheses around the assignment,
- R both stores the vector in a variable called y and
- automatically outputs y to the console.

Useful functions for creating vectors

- Use the seq() function for a more general sequence.
seq(from $=1.5$, to $=4.2$, by $=0.1$)

\#\# [20] 3.43 .53 .63 .73 .83 .94 .04 .14 .2
- Here, the input labels from, to, and by are optional. seq(1.5, 4.2, 0.1)

\#\# [20] 3.43 .53 .63 .73 .83 .94 .04 .14 .2
- We have now seen four different ways to create vectors:

1. c()
2. :
3. seq()
4. rep()

- They are often used together.

Length

- The length of a vector can be obtained with the length() function. length(x)
\#\# [1] 6
length(y)
\#\# [1] 100

Subsetting

- Use square brackets, [], to obtain a subset of a vector. - We see that $\mathrm{x}[1]$ returns the first element.

```
X
```

\#\# [1] 1335789
x [1]
\#\# [1] 1
x[3]
\#\# [1] 5

- We can also exclude certain indexes, in this case the second element. $\mathrm{x}[-2]$
\#\# [1] $15 \begin{array}{llll}5 & 7\end{array}$
- We can subset based on a vector of indices.
$\mathrm{x}[1: 3]$
\#\# [1] 135
$x[c(1,3,4)]$
\#\# [1] 157
- We could instead use a vector of logical values.
z = c(TRUE, TRUE, FALSE, TRUE, TRUE, FALSE)
z
\#\# [1] TRUE TRUE FALSE TRUE TRUE FALSE x[z]
\#\# [1] 1378

Vectorization

- One of the biggest strengths of R is its use of vectorized operations.
- Frequently the lack of understanding of this concept leads of a belief that R is slow.
- When a function like $\log ()$ is called on a vector x, a vector is returned which has applied the function to each element of the vector x .
$\mathrm{x}=1: 10$
x + 1
\#\# [1] $\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$
2 * x
\#\# [1] $224 c c c c c c c c c c$

```
2 - x
## [1] [lllllllllll
sqrt(x)
## [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490
## [9] 3.000000 3.162278
log(x)
## [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.79
## [8] 2.0794415 2.1972246 2.3025851
```


Logical Operators

Operator	Summary	Example	Result
$\mathrm{x}<\mathrm{y}$	x less than y	$3<42$	TRUE
$\mathrm{x}>\mathrm{y}$	x greater than y	$3>42$	FALSE
$\mathrm{x}<=\mathrm{y}$	x less than or equal to y	$3<=42$	TRUE
$\mathrm{x}>=\mathrm{y}$	x greater than or equal to y	$3>=42$	FALSE
$\mathrm{x}==\mathrm{y}$	xequal to y	$3==42$	FALSE
$\mathrm{x}!=\mathrm{y}$	x not equal to y	$3!=42$	TRUE
$!\mathrm{x}$	not x	$!(3>42)$	TRUE
$\mathrm{x} \mid \mathrm{y}$	x or y	$(3>42)$ \| TRUE	TRUE
$\mathrm{x} \& \mathrm{y}$	x and y	$(3<4) \&(42>13)$	TRUE

- Logical operators are vectorized. $\mathrm{x}=\mathrm{c}(1,3,5,7,8,9)$
x > 3
\#\# [1] FALSE FALSE TRUE TRUE TRUE TRUE
$\mathrm{x}<3$
\#\# [1] TRUE FALSE FALSE FALSE FALSE FALSE
$\mathrm{x}={ }^{3}$
\#\# [1] FALSE TRUE FALSE FALSE FALSE FALSE
x ! = 3
\#\# [1] TRUE FALSE TRUE TRUE TRUE TRUE

$$
\mathrm{x}==3 \& \mathrm{x}!=3
$$

\#\# [1] FALSE FALSE FALSE FALSE FALSE FALSE

$$
\mathrm{x}==3 \mid \mathrm{x}!=3
$$

\#\# [1] TRUE TRUE TRUE TRUE TRUE TRUE

- This is extremely useful for subsetting. $x[x>3]$
\#\# [1] 5789
$x[x \quad!=3]$
\#\# [1] 15789

Short exercise

1. Create the vector $z=(1,2,1,2,1,2)$, which has the same length as x. 2. Pick up the elements of x which corresponds to 1 in the vector z.

Section 3

Matrix

Matrix Operation: Basics

- R can also be used for matrix calculations.
- Matrices have rows and columns containing a single data type.
- Matrices can be created using the matrix function.

```
\(\mathrm{x}=1: 9\)
\(X=\) matrix \((x\), nrow \(=3\), ncol \(=3\) )
```

X

\#\#		$[, 1]$	$[, 2]$	$[, 3]$
\#\#	$[1]$,	1	4	7
\#\#	$[2]$,	2	5	8
\#\#	$[3]$,	3	6	9

- We are using two different variables:
- lower case x, which stores a vector and
- capital X, which stores a matrix.
- By default the matrix function reorders a vector into columns, but we can also tell R to use rows instead.

Y = matrix(x, nrow $=3$, ncol $=3$, byrow = TRUE)
Y

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	1	2	3
\#\# [2,]	4	5	6
\#\# [3,]	7	8	9

- a matrix of a specified dimension where every element is the same, in this case 0 .

\#\#	[,1]	[,2]	[,3]	[,4]
\#\# [1,]	0	0	0	0
\#\# [2,]	0	0	0	

- Matrices can be subsetted using square brackets, [].
- However, since matrices are two-dimensional, we need to specify both a row and a column when subsetting.
- Here we get the element in the first row and the second column.

X

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	1	4	7
\#\# [2,]	2	5	8
\#\# [3,]	3	6	9

$\mathrm{X}[1,2]$
\#\# [1] 4

- We can also subset an entire row or column. $\mathrm{X}[1$,

```
## [1] 1 4 7
X[, 2]
```

\#\# [1] 456

- Matrices can also be created by combining vectors as columns, using cbind, or combining vectors as rows, using rbind.

```
x = 1:9
rev(x)
```

\#\# [1] 987654321
rep(1, 9)
\#\# [1] $1 \begin{array}{lllllllll} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
rbind(x, rev(x), rep(1, 9))

\#\#	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$
\#\# x	1	2	3	4	5	6	7	8	9
\#\#	9	8	7	6	5	4	3	2	1
\#\#	1	1	1	1	1	1	1	1	1

- When using rbind and cbind you can specify "argument" names that will be used as column names.

```
cbind(col_1 = x, col_2 = rev(x), col_3 = rep(1, 9))
```

\#\#		col_1	col_2	col_3
\#\#	$[1]$,	1	9	1
\#\#	$[2]$,	2	8	1
\#\#	$[3]$,	3	7	1
\#\#	$[4]$,	4	6	1
\#\#	$[5]$,	5	5	1
\#\#	$[6]$,	6	4	1
\#\#	$[7]$,	7	3	1
\#\#	$[8]$,	8	2	1
\#\#	$[9]$,	9	1	1

Matrix calculations

- Perform matrix calculations.

```
x = 1:9
y = 9:1
X = matrix(x, 3, 3)
Y = matrix(y, 3, 3)
X
```

\#\#		$[, 1]$	$[, 2]$	$[, 3]$
\#\#	$[1]$,	1	4	7
\#\#	$[2]$,	2	5	8
\#\#	$[3]$,	3	6	9

Y

\#\#		$[, 1]$	$[, 2]$	$[, 3]$
\#\#	$[1]$,	9	6	3
\#\#	$[2]$,	8	5	2
\#\#	$[3]$,	7	4	1

$$
X+Y
$$

$$
\# \# \quad[, 1][, 2][, 3]
$$

$$
\begin{array}{llll}
\text { \#\# }[1,] & 10 & 10 & 10
\end{array}
$$

$$
\begin{array}{llll}
\text { \#\# [2,] } & 10 & 10 & 10
\end{array}
$$

$$
\text { \#\# [3,] } 10 \quad 10 \quad 10
$$

$$
X-Y
$$

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	-8	-2	4
\#\# [2,]	-6	0	6
\#\# [3,]	-4	2	8

X * Y			
\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	9	24	21
\#\# [2,]	16	25	16
\#\# [3,]	21	24	9
X / Y			

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\#	$[1]$,	0.1111111	0.6666667
\#\#	2.333333		
\#\#	$[3]$,	0.2500000	1.0000000

- Note that $\mathrm{X} * \mathrm{Y}$ is not matrix multiplication.
- It is element by element multiplication. (Same for X / Y).
- Matrix multiplication uses $\% * \%$.

X \% \% \% Y

\#\#	[,1]	$[, 2]$	$[, 3]$
\#\# [1,]	90	54	18
\#\# [2,]	114	69	24
\#\# [3,]	138	84	30

- $\mathrm{t}($) which gives the transpose of a matrix
t (X)

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	1	2	3
\#\# [2,]	4	5	6
\#\# [3,]	7	8	9

- solve() which returns the inverse of a square matrix if it is invertible.

```
Z = matrix(c(9, 2, -3, 2, 4, -2, -3, -2, 16), 3, byrow = TRUE)
Z
\begin{tabular}{lrrr} 
\#\# & [, 1] & {\([, 2]\)} & {\([, 3]\)} \\
\#\# [1,] & 9 & 2 & -3 \\
\#\# [2,] & 2 & 4 & -2 \\
\#\# [3,] & -3 & -2 & 16 \\
solve(Z) & & &
\end{tabular}
```

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# $[1]$,	0.12931034	-0.05603448	0.01724138
\#\# [2,]	-0.05603448	0.29094828	0.02586207
\#\# [3,]	0.01724138	0.02586207	0.06896552

- To verify that solve(Z) returns the inverse, we multiply it by Z. solve(Z) \%*\% Z

```
##
    [,1]
                                [,2]
                                    [,3]
## [1,] 1.000000e+00 -6.245005e-17 0.000000e+00
## [2,] 8.326673e-17 1.000000e+00 5.551115e-17
## [3,] 2.775558e-17 0.000000e+00 1.000000e+00
diag(3)
```

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	1	0	0
\#\# [2,]	0	1	0
\#\# [3,]	0	0	1

all.equal (solve(Z) \%*\% Z, diag(3))
\#\# [1] TRUE

Exercise

- Solve the following simultanoues equations using matrix calculation

$$
\begin{aligned}
2 x_{1}+3 x_{2} & =10 \\
5 x_{1}+x_{2} & =20
\end{aligned}
$$

- Hint: You can write this as $A x=y$ where A is the 2 -times-2 matrix, x and y are vectors with the length of 2 .

Getting information of matrix

- Matrix specific functions for obtaining dimension and summary information.

```
X = matrix(1:6, 2, 3)
X
\begin{tabular}{lrrr} 
\#\# & [, 1] & {\([, 2]\)} & {\([, 3]\)} \\
\#\# [1,] & 1 & 3 & 5 \\
\#\# [2,] & 2 & 4 & 6 \\
\(\operatorname{dim}(X)\) & & &
\end{tabular}
## [1] 2 3
rowSums(X)
## [1] 9 12
```


colSums (X)

\#\# [1] $3 \quad 7 \quad 11$
rowMeans(X)
\#\# [1] 34
colMeans (X)
\#\# [1] 1.53 .55 .5

- The diag() function can be used in a number of ways. We can extract the diagonal of a matrix.
diag(Z)
\#\# [1] $9 \quad 416$
- Or create a matrix with specified elements on the diagonal. (And 0 on the off-diagonals.)
diag(1:5)

\#\#	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
\#\# [1,]	1	0	0	0	0
\#\# [2,]	0	2	0	0	0
\#\# [3,]	0	0	3	0	0
\#\# [4,]	0	0	0	4	0
\#\# [5,]	0	0	0	0	5

- Or, lastly, create a square matrix of a certain dimension with 1 for every element of the diagonal and 0 for the off-diagonals.

Section 4

List

List

- A list is a one-dimensional heterogeneous data structure.
- It is indexed like a vector with a single integer value,
- but each element can contain an element of any type.

```
# creation
list(42, "Hello", TRUE)
## [[1]]
## [1] 42
##
## [[2]]
## [1] "Hello"
##
## [[3]]
## [1] TRUE
```

```
ex_list \(=\) list \((\)
    \(a=c(1,2,3,4)\),
    b = TRUE,
    c = "Hello!",
    \(d=\) function(arg \(=42)\) \{print("Hello World!")\},
    \(e=\operatorname{diag}(5)\)
)
```

- Lists can be subset using two syntaxes,

1. the \$ operator, and
2. square brackets [].
\# subsetting
ex_list\$e

\#\#	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
\#\# [1,]	1	0	0	0	0
\#\# [2,]	0	1	0	0	0
\#\# [3,]	0	0	1	0	0
\#\# [4,]	0	0	0	1	0
\#\# [5,]	0	0	0	0	1

```
ex_list[1:2]
## $a
## [1] 1 2 3 4
##
## $b
## [1] TRUE
```


ex_list ["e"]
\#\# \$e

\#\#		$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
\#\#	$[1]$,	1	0	0	0	0
\#\#	$[2]$,	0	1	0	0	0
\#\# $[3]$,	0	0	1	0	0	
\#\# $[4]$,	0	0	0	1	0	
\#\# $[5]$,	0	0	0	0	1	

ex_list\$d
\#\# function(arg = 42) \{print("Hello World!")\}

Data Frames

- We will talk about Dataframe in the next chapter.

Section 5

Control flow

if/else syntax

- The if/else syntax is:
if (...) \{
some R code
\} else \{
more R code
\}
- Example: To see whether x is large than y .

```
x = 1
y = 3
if (x > y) {
    z = x * y
    print("x is larger than y")
} else {
    z = x + 5 * y
    print("x is less than or equal to y")
}
```

\#\# [1] "x is less than or equal to y "
Z
\#\# [1] 16

- R also has a special function ifelse()
- It returns one of two specified values based on a conditional statement.
ifelse(4 > 3, 1, 0)
\#\# [1] 1
- The real power of ifelse() comes from its ability to be applied to vectors.

```
fib = c(1, 1, 2, 3, 5, 8, 13, 21)
ifelse(fib > 6, "Foo", "Bar")
## [1] "Bar" "Bar" "Bar" "Bar" "Bar" "Foo" "Foo" "Foo"
```

for loop

- A for loop repeats the same procedure for the specified number of times
x = 11:15
for (i in 1:5) \{
$x[i]=x[i] * 2$
\}

X
\#\# [1] $2224 \quad 262830$

- Note that this for loop is very normal in many programming languages.
- In R we would not use a loop, instead we would simply use a vectorized operation.
- for loop in R is known to be very slow.

$$
\begin{aligned}
& \mathrm{x}=11: 15 \\
& \mathrm{x}=\mathrm{x} * 2
\end{aligned}
$$

x
\#\# [1] 2224262830

Section 6

Function

Functions

- To use a function,
- you simply type its name,
- followed by an open parenthesis,
- then specify values of its arguments,
- then finish with a closing parenthesis.
- An argument is a variable which is used in the body of the function.
\# The following is just a demonstration,
\# not the real function in R.
function_name(arg1 = 10, arg2 = 20)
- We can also write our own functions in R.

Example

- Example: "standardize" variables

$$
\frac{x-\bar{x}}{s}
$$

- When writing a function, there are three thing you must do.

1. Give the function a name. Preferably something that is short, but descriptive.
2. Specify the arguments using function()
3. Write the body of the function within curly braces, \{\}.
```
standardize = function(x) {
    m = mean(x)
    std = sd(x)
    result = (x - m) / std
    return(result)
}
```

- Here the name of the function is standardize,
- The function has a single argument x which is used in the body of function.
- Note that the output of the final line of the body is what is returned by the function.
- Let's test our function
- Take a random sample of size $\mathrm{n}=10$ from a normal distribution with a mean of 2 and a standard deviation of 5 .

```
test_sample = rnorm(n = 10, mean = 2, sd = 5)
test_sample
## [1] -1.5143403 10.7411552 -2.2773664 6.6904636 -5.3841708
## [7] 11.2472866 3.2674091 0.1412592 1.7623680
standardize(x = test_sample)
```

\#\# [1] -0.79748119 1.43811087 -0.93666895 0.69920204 -1.503
\#\# [7] 1.53043708 0.07478391 -0.49547420 -0.19975888

- The same function can be written more simply. standardize $=$ function(x) \{ (x - mean(x)) / sd(x)
\}
- When specifying arguments, you can provide default arguments.
power_of_num = function(num, power = 2) \{
num - power
\}
- Let's look at a number of ways that we could run this function to perform the operation $10^{\wedge} 2$ resulting in 100 .
power_of_num (10)
\#\# [1] 100
power_of_num (10, 2)
\#\# [1] 100
power_of_num (num = 10, power = 2)
\#\# [1] 100
power_of_num(power = 2, num = 10)
\#\# [1] 100
- Note that without using the argument names, the order matters. The following code will not evaluate to the same output as the previous example.
power_of_num (2, 10)
\#\# [1] 1024
- Also, the following line of code would produce an error since arguments without a default value must be specified.
power_of_num(power = 5)
- To further illustrate a function with a default argument, we will write a function that calculates sample variance two ways.
- By default, the function will calculate the unbiased estimate of σ^{2}, which we will call s^{2}.

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}(x-\bar{x})^{2}
$$

- It will also have the ability to return the biased estimate (based on maximum likelihood) which we will call $\hat{\sigma}^{2}$.

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}(x-\bar{x})^{2}
$$

```
get_var = function(x, unbiased = TRUE) {
```

 if (unbiased == TRUE)\{
 \(\mathrm{n}=\) length(x) - 1
 \} else if (unbiased == FALSE) \{
 \(\mathrm{n}=\) length \((\mathrm{x})\)
 \}
 (1 / n) * \(\operatorname{sum}((x-\operatorname{mean}(x))\) - 2)
 \}

```
get_var(test_sample)
## [1] 30.05223
get_var(test_sample, unbiased = TRUE)
## [1] 30.05223
var(test_sample)
## [1] 30.05223
```

- We see the function is working as expected, and when returning the unbiased estimate it matches R's built in function $\operatorname{var}()$. Finally, let's examine the biased estimate of σ^{2}.

```
get_var(test_sample, unbiased = FALSE)
```

\#\# [1] 27.047

