
Data Vector Matrix List Control flow Function

R Basics 1

Instructor: Yuta Toyama

Last updated: 2020-03-30

1 / 65

Data Vector Matrix List Control flow Function

Section 1

Data

2 / 65

Data Vector Matrix List Control flow Function

Acknowledgement

This note is largely based on Applied Statistics with R.
https://daviddalpiaz.github.io/appliedstats/

3 / 65

https://daviddalpiaz.github.io/appliedstats/

Data Vector Matrix List Control flow Function

Data Types

R has a number of basic data types.

I Numeric
I Also known as Double. The default type when dealing with numbers.
I Examples: 1, 1.0, 42.5

I Logical
I Two possible values: TRUE and FALSE
I You can also use T and F, but this is not recommended.
I NA is also considered logical.

I Character
I Examples: "a", "Statistics", "1 plus 2."

4 / 65

Data Vector Matrix List Control flow Function

Data Structures

I R also has a number of basic data structures.
I A data structure is either

I homogeneous (all elements are of the same data type)
I heterogeneous (elements can be of more than one data type).

Dimension Homogeneous Heterogeneous

1 Vector List
2 Matrix Data Frame
3+ Array

5 / 65

Data Vector Matrix List Control flow Function

Section 2

Vector

6 / 65

Data Vector Matrix List Control flow Function

Vectors

Basics of vectors

I Many operations in R make heavy use of vectors.
I Vectors in R are indexed starting at 1.

I The most common way to create a vector in R is using the c() function,
which is short for “combine.”"

c(1, 3, 5, 7, 8, 9)

[1] 1 3 5 7 8 9

7 / 65

Data Vector Matrix List Control flow Function

Assignment

I If we would like to store this vector in a variable we can do so with the
assignment operator =.
I The variable x now holds the vector we just created, and we can access the

vector by typing x.

x = c(1, 3, 5, 7, 8, 9)
x

[1] 1 3 5 7 8 9

The following does the same thing.
x <- c(1, 3, 5, 7, 8, 9)
x

[1] 1 3 5 7 8 9

8 / 65

Data Vector Matrix List Control flow Function

I The operator = and <- work as an assignment operator.
I You can use both. This does not matter usually.
I If you are interested in the weird cases where the difference matters, check

out The R Inferno.
I In R code the line starting with # is comment, which is ignored when you

run the fode.

9 / 65

http://www.burns-stat.com/documents/books/the-r-inferno/

Data Vector Matrix List Control flow Function

A sequence of numbers.

I The quickest and easiest way to do this is with the : operator, which
creates a sequence of integers between two specified integers.

(y = 1:100)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
[91] 91 92 93 94 95 96 97 98 99 100

I By putting parentheses around the assignment,
I R both stores the vector in a variable called y and
I automatically outputs y to the console.

10 / 65

Data Vector Matrix List Control flow Function

Useful functions for creating vectors
I Use the seq() function for a more general sequence.
seq(from = 1.5, to = 4.2, by = 0.1)

[1] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
[20] 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

I Here, the input labels from, to, and by are optional.
seq(1.5, 4.2, 0.1)

[1] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
[20] 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

I We have now seen four different ways to create vectors:
1. c()
2. :
3. seq()
4. rep()

I They are often used together.
c(x, rep(seq(1, 9, 2), 3), c(1, 2, 3), 42, 2:4)

[1] 1 3 5 7 8 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 2 3 42
[26] 2 3 4

11 / 65

Data Vector Matrix List Control flow Function

Length

I The length of a vector can be obtained with the length() function.
length(x)

[1] 6

length(y)

[1] 100

12 / 65

Data Vector Matrix List Control flow Function

Subsetting

I Use square brackets, [], to obtain a subset of a vector.
I We see that x[1] returns the first element.
x

[1] 1 3 5 7 8 9

x[1]

[1] 1

x[3]

[1] 5

13 / 65

Data Vector Matrix List Control flow Function

I We can also exclude certain indexes, in this case the second element.
x[-2]

[1] 1 5 7 8 9

I We can subset based on a vector of indices.
x[1:3]

[1] 1 3 5

x[c(1,3,4)]

[1] 1 5 7

14 / 65

Data Vector Matrix List Control flow Function

I We could instead use a vector of logical values.
z = c(TRUE, TRUE, FALSE, TRUE, TRUE, FALSE)
z

[1] TRUE TRUE FALSE TRUE TRUE FALSE

x[z]

[1] 1 3 7 8

15 / 65

Data Vector Matrix List Control flow Function

Vectorization

I One of the biggest strengths of R is its use of vectorized operations.
I Frequently the lack of understanding of this concept leads of a belief that R

is slow.
I When a function like log() is called on a vector x, a vector is returned

which has applied the function to each element of the vector x.
x = 1:10
x + 1

[1] 2 3 4 5 6 7 8 9 10 11

2 * x

[1] 2 4 6 8 10 12 14 16 18 20

16 / 65

Data Vector Matrix List Control flow Function

2 ^ x

[1] 2 4 8 16 32 64 128 256 512 1024

sqrt(x)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427
[9] 3.000000 3.162278

log(x)

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
[8] 2.0794415 2.1972246 2.3025851

17 / 65

Data Vector Matrix List Control flow Function

Logical Operators

Operator Summary Example Result

x < y x less than y 3 < 42 TRUE
x > y x greater than y 3 > 42 FALSE
x <= y x less than or equal to y 3 <= 42 TRUE
x >= y x greater than or equal to y 3 >= 42 FALSE
x == y xequal to y 3 == 42 FALSE
x != y x not equal to y 3 != 42 TRUE
!x not x !(3 > 42) TRUE
x | y x or y (3 > 42) | TRUE TRUE
x & y x and y (3 < 4) & (42 > 13) TRUE

18 / 65

Data Vector Matrix List Control flow Function

I Logical operators are vectorized.
x = c(1, 3, 5, 7, 8, 9)
x > 3

[1] FALSE FALSE TRUE TRUE TRUE TRUE

x < 3

[1] TRUE FALSE FALSE FALSE FALSE FALSE

x == 3

[1] FALSE TRUE FALSE FALSE FALSE FALSE

x != 3

[1] TRUE FALSE TRUE TRUE TRUE TRUE

19 / 65

Data Vector Matrix List Control flow Function

x == 3 & x != 3

[1] FALSE FALSE FALSE FALSE FALSE FALSE

x == 3 | x != 3

[1] TRUE TRUE TRUE TRUE TRUE TRUE

20 / 65

Data Vector Matrix List Control flow Function

I This is extremely useful for subsetting.
x[x > 3]

[1] 5 7 8 9

x[x != 3]

[1] 1 5 7 8 9

21 / 65

Data Vector Matrix List Control flow Function

Short exercise

1. Create the vector z = (1, 2, 1, 2, 1, 2), which has the same length as x .
2. Pick up the elements of x which corresponds to 1 in the vector z .

22 / 65

Data Vector Matrix List Control flow Function

Section 3

Matrix

23 / 65

Data Vector Matrix List Control flow Function

Matrix Operation: Basics

I R can also be used for matrix calculations.
I Matrices have rows and columns containing a single data type.

I Matrices can be created using the matrix function.
x = 1:9
X = matrix(x, nrow = 3, ncol = 3)
X

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

I We are using two different variables:
I lower case x, which stores a vector and
I capital X, which stores a matrix.

24 / 65

Data Vector Matrix List Control flow Function

I By default the matrix function reorders a vector into columns, but we
can also tell R to use rows instead.

Y = matrix(x, nrow = 3, ncol = 3, byrow = TRUE)
Y

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

I a matrix of a specified dimension where every element is the same, in this
case 0.

Z = matrix(0, 2, 4)
Z

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0

25 / 65

Data Vector Matrix List Control flow Function

I Matrices can be subsetted using square brackets, [].
I However, since matrices are two-dimensional, we need to specify both a

row and a column when subsetting.
I Here we get the element in the first row and the second column.
X

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

X[1, 2]

[1] 4

26 / 65

Data Vector Matrix List Control flow Function

I We can also subset an entire row or column.
X[1,]

[1] 1 4 7

X[, 2]

[1] 4 5 6

27 / 65

Data Vector Matrix List Control flow Function

I Matrices can also be created by combining vectors as columns, using
cbind, or combining vectors as rows, using rbind.

x = 1:9
rev(x)

[1] 9 8 7 6 5 4 3 2 1

rep(1, 9)

[1] 1 1 1 1 1 1 1 1 1

rbind(x, rev(x), rep(1, 9))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
x 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1
1 1 1 1 1 1 1 1 1

28 / 65

Data Vector Matrix List Control flow Function

I When using rbind and cbind you can specify “argument” names that
will be used as column names.

cbind(col_1 = x, col_2 = rev(x), col_3 = rep(1, 9))

col_1 col_2 col_3
[1,] 1 9 1
[2,] 2 8 1
[3,] 3 7 1
[4,] 4 6 1
[5,] 5 5 1
[6,] 6 4 1
[7,] 7 3 1
[8,] 8 2 1
[9,] 9 1 1

29 / 65

Data Vector Matrix List Control flow Function

Matrix calculations
I Perform matrix calculations.
x = 1:9
y = 9:1
X = matrix(x, 3, 3)
Y = matrix(y, 3, 3)
X

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

Y

[,1] [,2] [,3]
[1,] 9 6 3
[2,] 8 5 2
[3,] 7 4 1 30 / 65

Data Vector Matrix List Control flow Function

X + Y

[,1] [,2] [,3]
[1,] 10 10 10
[2,] 10 10 10
[3,] 10 10 10

X - Y

[,1] [,2] [,3]
[1,] -8 -2 4
[2,] -6 0 6
[3,] -4 2 8

31 / 65

Data Vector Matrix List Control flow Function

X * Y

[,1] [,2] [,3]
[1,] 9 24 21
[2,] 16 25 16
[3,] 21 24 9

X / Y

[,1] [,2] [,3]
[1,] 0.1111111 0.6666667 2.333333
[2,] 0.2500000 1.0000000 4.000000
[3,] 0.4285714 1.5000000 9.000000

I Note that X * Y is not matrix multiplication.
I It is element by element multiplication. (Same for X / Y).

32 / 65

Data Vector Matrix List Control flow Function

I Matrix multiplication uses %*%.
X %*% Y

[,1] [,2] [,3]
[1,] 90 54 18
[2,] 114 69 24
[3,] 138 84 30

I t() which gives the transpose of a matrix
t(X)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

33 / 65

Data Vector Matrix List Control flow Function

I solve() which returns the inverse of a square matrix if it is invertible.
Z = matrix(c(9, 2, -3, 2, 4, -2, -3, -2, 16), 3, byrow = TRUE)
Z

[,1] [,2] [,3]
[1,] 9 2 -3
[2,] 2 4 -2
[3,] -3 -2 16

solve(Z)

[,1] [,2] [,3]
[1,] 0.12931034 -0.05603448 0.01724138
[2,] -0.05603448 0.29094828 0.02586207
[3,] 0.01724138 0.02586207 0.06896552

34 / 65

Data Vector Matrix List Control flow Function

I To verify that solve(Z) returns the inverse, we multiply it by Z.
solve(Z) %*% Z

[,1] [,2] [,3]
[1,] 1.000000e+00 -6.245005e-17 0.000000e+00
[2,] 8.326673e-17 1.000000e+00 5.551115e-17
[3,] 2.775558e-17 0.000000e+00 1.000000e+00

diag(3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

all.equal(solve(Z) %*% Z, diag(3))

[1] TRUE

35 / 65

Data Vector Matrix List Control flow Function

Exercise

I Solve the following simultanoues equations using matrix calculation

2x1 + 3x2 = 10
5x1 + x2 = 20

I Hint: You can write this as Ax = y where A is the 2-times-2 matrix, x
and y are vectors with the length of 2.

36 / 65

Data Vector Matrix List Control flow Function

Getting information of matrix

I Matrix specific functions for obtaining dimension and summary
information.

X = matrix(1:6, 2, 3)
X

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

dim(X)

[1] 2 3

rowSums(X)

[1] 9 12

37 / 65

Data Vector Matrix List Control flow Function

colSums(X)

[1] 3 7 11

rowMeans(X)

[1] 3 4

colMeans(X)

[1] 1.5 3.5 5.5

38 / 65

Data Vector Matrix List Control flow Function

I The diag() function can be used in a number of ways. We can extract
the diagonal of a matrix.

diag(Z)

[1] 9 4 16

I Or create a matrix with specified elements on the diagonal. (And 0 on
the off-diagonals.)

diag(1:5)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 2 0 0 0
[3,] 0 0 3 0 0
[4,] 0 0 0 4 0
[5,] 0 0 0 0 5

I Or, lastly, create a square matrix of a certain dimension with 1 for every
element of the diagonal and 0 for the off-diagonals.

diag(5)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1

39 / 65

Data Vector Matrix List Control flow Function

Section 4

List

40 / 65

Data Vector Matrix List Control flow Function

List

I A list is a one-dimensional heterogeneous data structure.
I It is indexed like a vector with a single integer value,
I but each element can contain an element of any type.

creation
list(42, "Hello", TRUE)

[[1]]
[1] 42
##
[[2]]
[1] "Hello"
##
[[3]]
[1] TRUE

41 / 65

Data Vector Matrix List Control flow Function

ex_list = list(
a = c(1, 2, 3, 4),
b = TRUE,
c = "Hello!",
d = function(arg = 42) {print("Hello World!")},
e = diag(5)

)

42 / 65

Data Vector Matrix List Control flow Function

I Lists can be subset using two syntaxes,
1. the $ operator, and
2. square brackets [].

subsetting
ex_list$e

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1

43 / 65

Data Vector Matrix List Control flow Function

ex_list[1:2]

$a
[1] 1 2 3 4
##
$b
[1] TRUE

44 / 65

Data Vector Matrix List Control flow Function

ex_list[c("e", "a")]

$e
[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1
##
$a
[1] 1 2 3 4

45 / 65

Data Vector Matrix List Control flow Function

ex_list["e"]

$e
[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1

ex_list$d

function(arg = 42) {print("Hello World!")}

46 / 65

Data Vector Matrix List Control flow Function

Data Frames

I We will talk about Dataframe in the next chapter.

47 / 65

Data Vector Matrix List Control flow Function

Section 5

Control flow

48 / 65

Data Vector Matrix List Control flow Function

if/else syntax

I The if/else syntax is:
if (...) {
some R code

} else {
more R code

}

49 / 65

Data Vector Matrix List Control flow Function

I Example: To see whether x is large than y.
x = 1
y = 3
if (x > y) {
z = x * y
print("x is larger than y")

} else {
z = x + 5 * y
print("x is less than or equal to y")

}

[1] "x is less than or equal to y"
z

[1] 16

50 / 65

Data Vector Matrix List Control flow Function

I R also has a special function ifelse()
I It returns one of two specified values based on a conditional statement.

ifelse(4 > 3, 1, 0)

[1] 1

I The real power of ifelse() comes from its ability to be applied to
vectors.

fib = c(1, 1, 2, 3, 5, 8, 13, 21)
ifelse(fib > 6, "Foo", "Bar")

[1] "Bar" "Bar" "Bar" "Bar" "Bar" "Foo" "Foo" "Foo"

51 / 65

Data Vector Matrix List Control flow Function

for loop

I A for loop repeats the same procedure for the specified number of times
x = 11:15
for (i in 1:5) {
x[i] = x[i] * 2

}

x

[1] 22 24 26 28 30

52 / 65

Data Vector Matrix List Control flow Function

I Note that this for loop is very normal in many programming languages.
I In R we would not use a loop, instead we would simply use a vectorized

operation.
I for loop in R is known to be very slow.

x = 11:15
x = x * 2
x

[1] 22 24 26 28 30

53 / 65

Data Vector Matrix List Control flow Function

Section 6

Function

54 / 65

Data Vector Matrix List Control flow Function

Functions

I To use a function,
I you simply type its name,
I followed by an open parenthesis,
I then specify values of its arguments,
I then finish with a closing parenthesis.

I An argument is a variable which is used in the body of the function.
The following is just a demonstration,
not the real function in R.
function_name(arg1 = 10, arg2 = 20)

I We can also write our own functions in R.

55 / 65

Data Vector Matrix List Control flow Function

Example

I Example: “standardize” variables

x − x̄
s

I When writing a function, there are three thing you must do.
1. Give the function a name. Preferably something that is short, but

descriptive.
2. Specify the arguments using function()
3. Write the body of the function within curly braces, {}.

56 / 65

Data Vector Matrix List Control flow Function

standardize = function(x) {
m = mean(x)
std = sd(x)
result = (x - m) / std
return(result)

}

I Here the name of the function is standardize,
I The function has a single argument x which is used in the body of

function.
I Note that the output of the final line of the body is what is returned by

the function.

57 / 65

Data Vector Matrix List Control flow Function

I Let’s test our function
I Take a random sample of size n = 10 from a normal distribution with a

mean of 2 and a standard deviation of 5.
test_sample = rnorm(n = 10, mean = 2, sd = 5)
test_sample

[1] -1.5143403 10.7411552 -2.2773664 6.6904636 -5.3841708 3.9003793
[7] 11.2472866 3.2674091 0.1412592 1.7623680

standardize(x = test_sample)

[1] -0.79748119 1.43811087 -0.93666895 0.69920204 -1.50339815 0.19024747
[7] 1.53043708 0.07478391 -0.49547420 -0.19975888

58 / 65

Data Vector Matrix List Control flow Function

I The same function can be written more simply.
standardize = function(x) {
(x - mean(x)) / sd(x)

}

I When specifying arguments, you can provide default arguments.
power_of_num = function(num, power = 2) {
num ^ power

}

59 / 65

Data Vector Matrix List Control flow Function

I Let’s look at a number of ways that we could run this function to perform
the operation 10ˆ2 resulting in 100.

power_of_num(10)

[1] 100

power_of_num(10, 2)

[1] 100

power_of_num(num = 10, power = 2)

[1] 100

power_of_num(power = 2, num = 10)

[1] 100

60 / 65

Data Vector Matrix List Control flow Function

I Note that without using the argument names, the order matters. The
following code will not evaluate to the same output as the previous
example.

power_of_num(2, 10)

[1] 1024

I Also, the following line of code would produce an error since arguments
without a default value must be specified.

power_of_num(power = 5)

61 / 65

Data Vector Matrix List Control flow Function

I To further illustrate a function with a default argument, we will write a
function that calculates sample variance two ways.

I By default, the function will calculate the unbiased estimate of σ2, which
we will call s2.

s2 = 1
n − 1

n∑
i=1

(x − x̄)2

I It will also have the ability to return the biased estimate (based on
maximum likelihood) which we will call σ̂2.

σ̂2 = 1
n

n∑
i=1

(x − x̄)2

62 / 65

Data Vector Matrix List Control flow Function

get_var = function(x, unbiased = TRUE) {

if (unbiased == TRUE){
n = length(x) - 1

} else if (unbiased == FALSE){
n = length(x)
}

(1 / n) * sum((x - mean(x)) ^ 2)
}

63 / 65

Data Vector Matrix List Control flow Function

get_var(test_sample)

[1] 30.05223

get_var(test_sample, unbiased = TRUE)

[1] 30.05223

var(test_sample)

[1] 30.05223

64 / 65

Data Vector Matrix List Control flow Function

I We see the function is working as expected, and when returning the
unbiased estimate it matches R’s built in function var(). Finally, let’s
examine the biased estimate of σ2.

get_var(test_sample, unbiased = FALSE)

[1] 27.047

65 / 65

	Data
	Vector
	Matrix
	List
	Control flow
	Function

