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Introduction

The goal of this chapter is

1. Review of Estimation
I Properties of Estimators: Unbiasedness, Consistency
I Law of large numbers

2. Review of Central Limit Theorem
I Important tool for hypothesis testing (to be covered later)
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Section 2

Statistical Estimation
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Estimation

I Estimator: A mapping from the sample data drawn from an unknown
population to a certain feature in the population
I Example: Consider hourly earnings of college graduates Y .

I You want to estimate the mean of Y , defined as E [Y ] = µy
I Draw a random sample of n i.i.d. (identically and independently

distributed) observations Y1,Y2, . . . ,YN

I How to estimate E [Y ] from the data?
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I Idea 1: Sample mean

Ȳ = 1
n

n∑
i=1

Yi ,

I Idea 2: Pick the first observation of the sample.
I Question: How can we say which is better?
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Properties of the estimator

Consider the estimator µ̂N for the unknown parameter µ.

1. Unbiasdeness: The expectation of the estimator is the same as the true
parameter in the population.

E [µ̂N ] = µ

2. Consistency: The estimator converges to the true parameter in
probability.

∀ε > 0, lim
N→∞

Prob(|µ̂N − µ| < ε) = 1

I Intuition: As the sample size gets larger, the estimator and the true
parameter is close with probability one.

I Note: a bit different from the usual convergence of the sequence.
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Sample mean Ȳ is unbiased and consistent

I Showing these two properties using mathmaetics is straightforward:
I Unbiasedness: Take expectation.
I Consistency: Law of large numbers.

I Let’s examine these two properties using R programming!
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Step 0: Preparing packages

# Use the following packages
library("readr")
library("ggplot2")
library("reshape")

# If not yet, please install by install.packages("").
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Step 1: Prepare a population

I Use income and age data from PUMS 5% sample of U.S. Census 2000.
I PUMS: Public Use Microdata Sample
I Download the example data. Put this file in the same folder as your R

script file.
I https://yutatoyama.github.io/AppliedEconometrics2020/03_Stat/data_

pums_2000.csv
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# Use "readr" package
library(readr)
pums2000 <- read_csv("data_pums_2000.csv")

## Parsed with column specification:
## cols(
## AGE = col_double(),
## INCTOT = col_double()
## )

I We treat this dataset as population.

pop <- as.vector(pums2000$INCTOT)
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I Population mean and standard deviation

pop_mean = mean(pop)
pop_sd = sd(pop)

# Average income in population
pop_mean

## [1] 30165.47

# Standard deviation of income in population
pop_sd

## [1] 38306.17
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I income distribution in population (Unit in USD)

fig <- ggplot2::qplot(pop, geom = "density",
xlab = "Income",
ylab = "Density")
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plot(fig)
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I The distribution has a long tail.
I Let’s plot the distribution in log scale

# `log` option specifies which axis is represented in log scale.
fig2 <- qplot(pop, geom = "density",

xlab = "Income",
ylab = "Density",
log = "x")
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plot(fig2)
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I Let’s investigate how close the sample mean constucted from the
random sample is to the true population mean.

I Step 1: Draw random samples from this population and calculate Ȳ for
each sample.
I Set the sample size N.

I Step 2: Repeat 2000 times. You now have 2000 sample means.

# Set the seed for the random number.
# This is needed to maintaine the reproducibility of the results.
set.seed(123)

# draw random sample of 100 observations from the variable pop
test <- sample(x = pop, size = 100)
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# Use loop to repeat 2000 times.
Nsamples = 2000
result1 <- numeric(Nsamples)

for (i in 1:Nsamples ){

test <- sample(x = pop, size = 100)
result1[i] <- mean(test)

}
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# Anotther way to do this.
result1 <- replicate(expr = mean(sample(x = pop, size = 10)), n = Nsamples)
result2 <- replicate(expr = mean(sample(x = pop, size = 100)),

n = Nsamples)
result3 <- replicate(expr = mean(sample(x = pop, size = 500)),

n = Nsamples)

# Create dataframe
result_data <- data.frame( Ybar10 = result1,

Ybar100 = result2,
Ybar500 = result3)
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I Step 3: See the distribution of those 2000 sample means.

# Use "melt" to change the format of result_data
data_for_plot <- melt(data = result_data, variable.name = "Variable" )

## Using as id variables

# Use "ggplot2" to create the figure.
# The variable `fig` contains the information about the figure
fig <-

ggplot(data = data_for_plot) +
xlab("Sample mean") +
geom_line(aes(x = value, colour = variable ), stat = "density" ) +
geom_vline(xintercept=pop_mean ,colour="black")
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plot(fig)
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I Observation 1: Regardless of the sample size, the average of the sample
means is close to the population mean. Unbiasdeness

I Observation 2: As the sample size gets larger, the distribution is
concentrated around the population mean. Consistency (law of large
numbers)
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Section 3

Central Limit Theorem
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Central limit theorem

I Cental limit theorem: Consider the i.i.d. sample of Y1, · · · ,YN drawn
from the random variable Y with mean µ and variance σ2. The
following Z converges in distribution to the normal distribution.

Z = 1√
N

N∑
i=1

Yi − µ
σ

d→ N(0, 1)

In other words,
lim

N→∞
P (Z ≤ z) = Φ(z)
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What does CLT mean?

I The central limit theorem implies that if N is large enough, we can
approximate the distribution of Ȳ by the standard normal distribution
with mean µ and variance σ2/N regardless of the underlying
distribution of Y .

I This property is called asymptotic normality.

I Let’s examine this property through simulation!!
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Numerical Simulation

I Use the same example as before. Remember that the underlying income
distribution is clearly NOT normal.
I Population mean µ = 30165.4673315
I standard deviation σ = 38306.1712336.
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# define function for simulation
f_simu_CLT = function(Nsamples, samplesize, pop, pop_mean, pop_sd ){

output = numeric(Nsamples)
for (i in 1:Nsamples ){

test <- sample(x = pop, size = samplesize)
output[i] <- ( mean(test) - pop_mean ) / (pop_sd / sqrt(samplesize))

}

return(output)

}
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# Set the seed for the random number
set.seed(124)

# Run simulation
Nsamples = 2000
result_CLT1 <- f_simu_CLT(Nsamples, 10, pop, pop_mean, pop_sd )
result_CLT2 <- f_simu_CLT(Nsamples, 100, pop, pop_mean, pop_sd )
result_CLT3 <- f_simu_CLT(Nsamples, 1000, pop, pop_mean, pop_sd )

# Random draw from standard normal distribution as comparison
result_stdnorm = rnorm(Nsamples)

# Create dataframe
result_CLT_data <- data.frame( Ybar_standardized_10 = result_CLT1,

Ybar_standardized_100 = result_CLT2,
Ybar_standardized_1000 = result_CLT3,
Standard_Normal = result_stdnorm)
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I Now take a look at the distribution.

# Use "melt" to change the format of result_data
data_for_plot <- melt(data = result_CLT_data, variable.name = "Variable" )

## Using as id variables

# Use "ggplot2" to create the figure.
fig <-

ggplot(data = data_for_plot) +
xlab("Sample mean") +
geom_line(aes(x = value, colour = variable ), stat = "density" ) +
geom_vline(xintercept=0 ,colour="black")
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plot(fig)
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I As N grows, the distribution is getting closer to the standard normal
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