Linear Regression 1

Instructor: Yuta Toyama

Last updated: 2020-03-30
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Regression framework

> Let Y; be the dependent variable and Xj, be k-th explanatory variable.

> We have K explantory variables (along with constant term)
» jis an index for observations. i =1,--- , N.
» Data (sample): {Yi, Xi1, ..., X}V,

» Linear regression model is defined as

Yi = Po+ L1 Xii+ -+ B Xki + €

> ¢;: error term (unobserved)
» (3. coefficients
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» Assumptions for Ordinaly Least Squares (OLS) estimation
1. Random sample: {Y;, Xi1,..., Xk} is i.i.d. drawn sample
> i.i.d.: identically and independently distributed
2. €; has zero conditional mean

E[€i|X,'1, .. .,X,'K] =0

3. Large outliers are unlikely: The random variable Y; and X, have finite
fourth moments.

4. No perfect multicollinearity: There is no linear relationship betwen
explanatory variables.
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» OLS estimators are the minimizers of the sum of squared residuals:

N

min ~ D (Y= (Bo+ BiXin + -+ + B Xik))?

Bo B N 4=

» Using matrix notation, we have the following analytical formula for the
OLS estimator
f=(X'X)"1X'Y

where
\
I X1 - Xk Y1 g(l)
X = : : : , Y = : , B = ]
~~ : : ' ~~ ) ~~ :
Nx(K+1) 1 Xy -+ Xwk Nx1 Yn (K+1)x1 B
/

5/28



Framework S icatio it Inference

[e]e]ele] J

Theoretical Properties of OLS estimator

» We briefly review theoretical properties of OLS estimator.

1. Unbiasedness: Conditional on the explantory variables X, the
expectation of the OLS estimator 3 is equal to the true value .

E[3IX] =B

2. Consistency: As the sample size N goes to infinity, the OLS estimator
[ converges to (8 in probability

528

3. Asymptotic normality: Will talk this later
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Interpretation and Specifications of Linear Regression Model
» Remember that

Yi= 0o+ b1 X1i+ -+ Bk Xki + €

> The coefficient 3 captures the effect of Xx on Y ceteris paribus (all
things being equal)
» Equivalently, if Xj is continuous random variable,

oY
Txk—/@’k

» |f we can estimate (3, without bias, can obtain causal effect of X, on Y.
» This is of course very difficult task. We will see this more later.

» Several specifications frequently used in empirical analysis.
1. Nonlinear term
2. log specification
3. dummy (categorical) variables
4. interaction terms
8/28



Specification
00®000

Nonlinear term

» We can capture non-linear relationship between Y and X in a linearly
additive form

Yi = Bo + BiXi + BoXP + B3 XP + €

» As long as the error term ¢; appreas in a additively linear way, we can
estimate the coefficients by OLS.

> Multicollinarity could be an issue if we have many polynomials (see later).
> You can use other non-linear variables such as log(x) and /.
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log specification

» We often use log variables in both dependent and independent variables.
» Using log changes the interpretation of the coefficient 5 in terms of
scales.

Dependent Explanatory interpretation

Y X 1 unit increase in X causes 8 units change in Y
log Y X 1 unit increase in X causes 1003% incchangereas:
Y log X 1% increase in X causes (3/100 unit change in Y
log Y log X 1% increase in X causes 3% change in Y
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Dummy variable
» A dummy variable takes only 1 or 0. This is used to express qualititative

information
» Example: Dummy variable for race

_ {1 if white
white; =

0 otherwise

» The coefficient on a dummy variable captures the difference of the
outcome Y between categories
» Consider the linear regression

Y; = Bo + Biwhite; + €;

The coefficient ;1 captures the difference of Y between white and
non-white people.
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Interaction term

» You can add the interaction of two explanatory variables in the
regression model.
» For example:

wage; = (o + [reduc; + Bawhite; + Bzeduc; x white; + €;

where wage; is the earnings of person i and educ; is the years of
schooling for person i.
» The effect of educ; is

Owage;

owage; _ hite;
Deduc, B1 + Bawhite;,

» This allows for heterogenous effects of education across races.
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Measures of Fit

> We often use R? as a measure of the model fit.
» Denote the fitted value as y;

Vi =Bo+ PiXan+ -+ B Xik

P> Also called prediction from the OLS regression.

> R2 s defined as

SSE
R?=——
TSS’

where

SSE =3 (5 —7)% TSS =3 (i —7)’

> R? captures the fraction of the variation of Y explained by the
regression model.
» Adding variables always (weakly) increases R2.

1428



» In a regression model with multiple explanatory variables, we often use
adjusted R? that adjusts the number of explanatory variables

N—(K+1)TSS

where

SSR =i — yi)*(= Y i),

i i
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Statistical Inference

» Notice that the OLS estimators are random variables. They depend on
the data, which are random variables drawn from some population
distribution.

» We can conduct statistical inferences regarding those OLS estimators: 1.
Hypothesis testing 2. Constructing confidence interval

» | first explain the sampling distribution of the OLS estimators.
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Distribution of the OLS estimators based on asymptotic theory

» Deriving the exact (finite-sample) distribution of the OLS estimators is
very hard.
» The OLS estimators depend on the data Y}, X; in a complex way.
> We typically do not know the distribution of Y and X.
> We rely on asymptotic argument. We approximate the sampling
distribution of the OLS esimator based on the cental limit theorem.
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» Under the OLS assumption, the OLS estimator has asymptotic

normality

VN(B —8) % N(0, V)
where

%4 = E[Xix;] L E[x!x;€?] E[x/x;] 7!
~—
(K+1)x(K+1)

and

X :(17Xi17"' 7XfK)/

~—

(K+1)x1

» We can approximate the distribution of B by
B~ N(B, V/N)

» The above is joint distribution. Let Vj; be the (i, ) element of the
matrix V.
» The individual coefficient 3 follows

Bk ~ N(Bk, Vir/N)
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Estimation of Asymptotic Variance

» V is an unknown object. Need to be estimated.
» Consider the estimator V for V' using sample analogues

. 1Y T, N1
= (i) () (o)

where €; = y; — (Bg 4+ 4 ﬁAKX,-K) is the residual.
» Technically speaking, V converges to V in probability. (Proof is out of
the scope of this course)

> We often use the (asymptotic) standard error SE(Sx) = v/ Vi /N.
» The standard error is an estimator for the standard deviation of the OLS
estimator (.

-1
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Hypothesis testing

» OLS estimator is the random variable.
» You might want to test a particular hypothesis regarding those
coefficients.

» Does x really affects y?
» Is the production technology the constant returns to scale?

» Here | explain how to conduct hypothesis testing.
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3 Steps in Hypothesis Testing

>

Step 1: Consider the null hypothesis Hy and the alternative hypothesis
Hy
Ho: 1=k Hi:p1#k
where k is the known number you set by yourself.
Step 2: Define t-statistic by

_ B — k
SE(f1)

Step 3: We reject Hy is at a-percent significance level if

n

Ital > Co2

where C, > is the a/2 percentile of the standard normal distribution.
> We say we fail to reject Hy if the above does not hold.
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Caveats on Hypothesis Testing

> We often say 3 is statistically significant at 5% level if |t,| > 1.96
when we set kK = 0.
» Arguing the statistical significance alone is not enough for argument in
empirical analysis.
» Magnitude of the coefficient is also important.
» Case 1: Small but statistically significant coefficient.
P As the sample size N gets large, the SE decreases.

» Case 2: Large but statistically insignificant coefficient.

> The variable might have an important (economically meaningful) effect.
> But you may not be able to estimate the effect precisely with the sample
at your hand.
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F test

» We often test a composite hypothesis that involves multiple parameters
such as

Ho:P1+P2=0, Hi:f1+ P2 #0
» We use F test in such a case (to be added).
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Confidence interval

» 95% confidence interval

C/,,:{k:|61_Ak§1.96} (1)
SE(f)
= [B1—1.96 x SE(B1), 1 +1.96 x SE(By)] (2)

» Interpretation: If you draw many samples (dataset) and construct the
95% CI for each sample, 95% of those Cls will include the true
parameter.
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Homoskedasticity vs Heteroskedasticity

» So far, we did not put any assumption on the variance of the error term
€j.

» The error term ¢; has heteroskedasticity if Var(u;|X;) depends on X;.

» If not, we call ¢; has homoskedasticity.

» This has an important implication on the asymptotic variance.
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» Remember the asymptotic variance
% = E[xix;]  E[x/x;e?] E[x/x;] !
(K+1)x(K+1)
Standard errors based on this is called heteroskedasticity robust

standard errors/
» If homoskedasticity holds, then

V = E[xixj] 10?

where 02 = V(¢;).

» In many statistical packages (including R and Stata), the standard errors
for the OLS estimators are calcualted under homoskedasticity
assumption as a default.

» However, if the error has heteroskedasticity, the standard error under
homoskedasticity assumption will be underestimated.

» In OLS, we should always use heteroskedasticity robust standard
error.

» We will see how to fix this in R.
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