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Regression framework

I Let Yi be the dependent variable and Xik be k-th explanatory variable.
I We have K explantory variables (along with constant term)
I i is an index for observations. i = 1, · · · ,N.
I Data (sample): {Yi ,Xi1, . . . ,XiK}N

i=1
I Linear regression model is defined as

Yi = β0 + β1X1i + · · ·+ βK XKi + εi

I εi : error term (unobserved)
I β: coefficients
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I Assumptions for Ordinaly Least Squares (OLS) estimation
1. Random sample: {Yi ,Xi1, . . . ,XiK} is i.i.d. drawn sample

I i.i.d.: identically and independently distributed
2. εi has zero conditional mean

E [εi |Xi1, . . . ,XiK ] = 0

3. Large outliers are unlikely: The random variable Yi and Xik have finite
fourth moments.

4. No perfect multicollinearity: There is no linear relationship betwen
explanatory variables.
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I OLS estimators are the minimizers of the sum of squared residuals:

min
β0,··· ,βK

1
N

N∑
i=1

(Yi − (β0 + β1Xi1 + · · ·+ βK XiK ))2

I Using matrix notation, we have the following analytical formula for the
OLS estimator

β̂ = (X ′X )−1X ′Y

where

X︸︷︷︸
N×(K+1)

=

 1 X11 · · · X1K
...

...
...

1 XN1 · · · XNK

 , Y︸︷︷︸
N×1

=

 Y1
...

YN

 , β︸︷︷︸
(K+1)×1

=


β0
β1
...
βK
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Theoretical Properties of OLS estimator

I We briefly review theoretical properties of OLS estimator.

1. Unbiasedness: Conditional on the explantory variables X , the
expectation of the OLS estimator β̂ is equal to the true value β.

E [β̂|X ] = β

2. Consistency: As the sample size N goes to infinity, the OLS estimator
β̂ converges to β in probability

β̂
p−→ β

3. Asymptotic normality: Will talk this later
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Section 2

Specification
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Interpretation and Specifications of Linear Regression Model
I Remember that

Yi = β0 + β1X1i + · · ·+ βK XKi + εi

I The coefficient βk captures the effect of Xk on Y ceteris paribus (all
things being equal)

I Equivalently, if Xk is continuous random variable,

∂Y
∂Xk

= βk

I If we can estimate βk without bias, can obtain causal effect of Xk on Y .
I This is of course very difficult task. We will see this more later.

I Several specifications frequently used in empirical analysis.
1. Nonlinear term
2. log specification
3. dummy (categorical) variables
4. interaction terms
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Nonlinear term

I We can capture non-linear relationship between Y and X in a linearly
additive form

Yi = β0 + β1Xi + β2X 2
i + β3X 3

i + εi

I As long as the error term εi appreas in a additively linear way, we can
estimate the coefficients by OLS.
I Multicollinarity could be an issue if we have many polynomials (see later).
I You can use other non-linear variables such as log(x) and

√
x .
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log specification

I We often use log variables in both dependent and independent variables.
I Using log changes the interpretation of the coefficient β in terms of

scales.

Dependent Explanatory interpretation

Y X 1 unit increase in X causes β units change in Y
log Y X 1 unit increase in X causes 100β% incchangerease in Y
Y log X 1% increase in X causes β/100 unit change in Y
log Y log X 1% increase in X causes β% change in Y
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Dummy variable

I A dummy variable takes only 1 or 0. This is used to express qualititative
information

I Example: Dummy variable for race

whitei =
{
1 if white
0 otherwise

I The coefficient on a dummy variable captures the difference of the
outcome Y between categories

I Consider the linear regression

Yi = β0 + β1whitei + εi

The coefficient β1 captures the difference of Y between white and
non-white people.

11 / 28



Framework Specification Fit Inference Testing

Interaction term

I You can add the interaction of two explanatory variables in the
regression model.

I For example:

wagei = β0 + β1educi + β2whitei + β3educi × whitei + εi

where wagei is the earnings of person i and educi is the years of
schooling for person i .

I The effect of educi is

∂wagei
∂educi

= β1 + β3whitei ,

I This allows for heterogenous effects of education across races.
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Section 3

Fit
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Measures of Fit

I We often use R2 as a measure of the model fit.
I Denote the fitted value as ŷi

ŷi = β̂0 + β̂1Xi1 + · · ·+ β̂K XiK

I Also called prediction from the OLS regression.
I R2 is defined as

R2 = SSE
TSS ,

where
SSE =

∑
i

(ŷi − ȳ)2, TSS =
∑

i
(yi − ȳ)2

I R2 captures the fraction of the variation of Y explained by the
regression model.

I Adding variables always (weakly) increases R2.
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I In a regression model with multiple explanatory variables, we often use
adjusted R2 that adjusts the number of explanatory variables

R̄2 = 1− N − 1
N − (K + 1)

SSR
TSS

where
SSR =

∑
i

(ŷi − yi )2(=
∑

i
û2

i ),
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Section 4

Inference
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Statistical Inference

I Notice that the OLS estimators are random variables. They depend on
the data, which are random variables drawn from some population
distribution.

I We can conduct statistical inferences regarding those OLS estimators: 1.
Hypothesis testing 2. Constructing confidence interval

I I first explain the sampling distribution of the OLS estimators.
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Distribution of the OLS estimators based on asymptotic theory

I Deriving the exact (finite-sample) distribution of the OLS estimators is
very hard.
I The OLS estimators depend on the data Yi ,Xi in a complex way.
I We typically do not know the distribution of Y and X .

I We rely on asymptotic argument. We approximate the sampling
distribution of the OLS esimator based on the cental limit theorem.
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I Under the OLS assumption, the OLS estimator has asymptotic
normality √

N(β̂ − β) d→ N (0,V )
where

V︸︷︷︸
(K+1)×(K+1)

= E [x′ixi ]−1E [x′ixiε
2
i ]E [x′ixi ]−1

and
xi︸︷︷︸

(K+1)×1

= (1,Xi1, · · · ,XiK )′

I We can approximate the distribution of β̂ by

β̂ ∼ N(β,V /N)
I The above is joint distribution. Let Vij be the (i , j) element of the

matrix V .
I The individual coefficient βk follows

β̂k ∼ N(βk ,Vkk/N)
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Estimation of Asymptotic Variance

I V is an unknown object. Need to be estimated.
I Consider the estimator V̂ for V using sample analogues

V̂ =
(
1
N

N∑
i=1

x′ixi

)−1(
1
N

N∑
i=1

x′ixi ε̂
2
i

)(
1
N

N∑
i=1

x′ixi

)−1

where ε̂i = yi − (β̂0 + · · ·+ β̂K XiK ) is the residual.
I Technically speaking, V̂ converges to V in probability. (Proof is out of

the scope of this course)
I We often use the (asymptotic) standard error SE (β̂k) =

√
V̂kk/N.

I The standard error is an estimator for the standard deviation of the OLS
estimator β̂k .
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Hypothesis testing

I OLS estimator is the random variable.
I You might want to test a particular hypothesis regarding those

coefficients.
I Does x really affects y?
I Is the production technology the constant returns to scale?

I Here I explain how to conduct hypothesis testing.
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3 Steps in Hypothesis Testing

I Step 1: Consider the null hypothesis H0 and the alternative hypothesis
H1

H0 : β1 = k,H1 : β1 6= k

where k is the known number you set by yourself.
I Step 2: Define t-statistic by

tn = β̂1 − k
SE (β̂1)

I Step 3: We reject H0 is at α-percent significance level if

|tn| > Cα/2

where Cα/2 is the α/2 percentile of the standard normal distribution.
I We say we fail to reject H0 if the above does not hold.
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Caveats on Hypothesis Testing

I We often say β̂ is statistically significant at 5% level if |tn| > 1.96
when we set k = 0.

I Arguing the statistical significance alone is not enough for argument in
empirical analysis.

I Magnitude of the coefficient is also important.
I Case 1: Small but statistically significant coefficient.

I As the sample size N gets large, the SE decreases.
I Case 2: Large but statistically insignificant coefficient.

I The variable might have an important (economically meaningful) effect.
I But you may not be able to estimate the effect precisely with the sample

at your hand.

24 / 28



Framework Specification Fit Inference Testing

F test

I We often test a composite hypothesis that involves multiple parameters
such as

H0 : β1 + β2 = 0, H1 : β1 + β2 6= 0
I We use F test in such a case (to be added).
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Confidence interval

I 95% confidence interval

CIn =
{

k : | β̂1 − k
SE (β̂1)

| ≤ 1.96
}

(1)

=
[
β̂1 − 1.96× SE (β̂1), β̂1 + 1.96× SE (β̂1)

]
(2)

I Interpretation: If you draw many samples (dataset) and construct the
95% CI for each sample, 95% of those CIs will include the true
parameter.
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Homoskedasticity vs Heteroskedasticity

I So far, we did not put any assumption on the variance of the error term
εi .

I The error term εi has heteroskedasticity if Var(ui |Xi ) depends on Xi .
I If not, we call εi has homoskedasticity.
I This has an important implication on the asymptotic variance.
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I Remember the asymptotic variance

V︸︷︷︸
(K+1)×(K+1)

= E [x′ixi ]−1E [x′ixiε
2
i ]E [x′ixi ]−1

Standard errors based on this is called heteroskedasticity robust
standard errors/

I If homoskedasticity holds, then

V = E [x′ixi ]−1σ2

where σ2 = V (εi ).
I In many statistical packages (including R and Stata), the standard errors

for the OLS estimators are calcualted under homoskedasticity
assumption as a default.

I However, if the error has heteroskedasticity, the standard error under
homoskedasticity assumption will be underestimated.

I In OLS, we should always use heteroskedasticity robust standard
error.
I We will see how to fix this in R.
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