	Introduction 000	Endogeneity 000000	Multicollinearity issue	Research Design, Identification Strategy 00000
--	---------------------	-----------------------	-------------------------	--

Regression 3: Discussions on OLS Assumptions

Instructor: Yuta Toyama

Last updated: 2020-06-10

Introduction	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
000	000000	00000000	00000

Section 1

Introduction

Introduction	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
000			

OLS Assumptions

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_K X_{iK} + \epsilon_i$$

- 1. Random sample: $\{Y_i, X_{i1}, \ldots, X_{iK}\}$ is i.i.d. drawn sample
 - i.i.d.: identically and independently distributed
- 2. ϵ_i has zero conditional mean

$$E[\epsilon_i|X_{i1},\ldots,X_{iK}]=0$$

• This implies $Cov(X_{ik}, \epsilon_i) = 0$ for all k. (or $E[\epsilon_i X_{ik}] = 0$)

No correlation between error term and explanatory variables.

3. Large outliers are unlikely:

• The random variable Y_i and X_{ik} have finite fourth moments.

4. No perfect multicollinearity:

There is no linear relationship betwen explanatory variables.

Introduction	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
000			

- The OLS estimator has ideal properties (consistency, asymptotic normality, unbiasdness) under these assumptions.
- ▶ In this chapter, we study the role of these assumptions.
- In particular, we focus on the following two assumptions
 - 1. No correlation between ϵ_{it} and X_{ik}
 - 2. No perfect multicollinearity

	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
000	•00000	00000000	00000

Section 2

Endogeneity

Introduction 000	Endogeneity 0●0000	Multicollinearity issue	Research Design, Identification Strategy 00000

Endogeneity problem

When Cov(x_k, ϵ) = 0 does not hold, we have endogeneity problem
 We call such x_k an endogenous variable.

There are several cases in which we have endogeneity problem

- 1. Omitted variable bias
- 2. Measurement error
- 3. Simultaneity
- 4. Sample selection
- Here, I focus on the omitted variable bias.

Introduction 000	Endogeneity 00●000	Multicollinearity issue	Research Design, Identification Strategy 00000

Omitted variable bias

Consider the wage regression equation (true model)

1

$$\log W_i = \beta_0 + \beta_1 S_i + \beta_2 A_i + u_i$$
$$E[u_i | S_i, A_i] = 0$$

where W_i is wage, S_i is the years of schooling, and A_i is the ability.

- What we want to know is β₁, the effect of the schooling on the wage holding other things fixed. Also called the returns from education.
- An issue is that we do not often observe the ability of a person directly.

	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
000	000000	00000000	00000

Suppose that you omit A_i and run the following regression instead.

$$\log W_i = \alpha_0 + \alpha_1 S_i + v_i$$

Notice that $v_i = \beta_2 A_i + u_i$, so that S_i and v_i is likely to be correlated.

• The OLS estimator $\hat{\alpha}_1$ will have the bias:

$$E[\hat{\alpha}_1] = \beta_1 + \beta_2 \frac{Cov(S_i, A_i)}{Var(S_i)}$$

• You can also say $\hat{\alpha}_1$ is not consistent for β_1 , i.e.,

$$\hat{\alpha}_1 \xrightarrow{p} \beta_1 + \beta_2 \frac{Cov(S_i, A_i)}{Var(S_i)}$$

omitted variable bias formula

Omitted variable bias depends on

- 1. The effect of the omitted variable (A_i here) on the dependent variable: β_2
- 2. Correlation between the omitted variable and the explanatory variable.

Summary table

• x_1 : included, x_2 omitted. β_2 is the coefficient on x_2 .

	$Cov(x_1,x_2)>0$	$Cov(x_1, x_2) < 0$
$\beta_2 > 0$	Positive bias	Negative bias
$\beta_2 < 0$	Negative bias	Positive bias

- Can make a guess about the direction of the bias!!
- Crucial when reading an empirical paper and doing an empirical analysis.

Introduction 000	Endogeneity 00000●	Multicollinearity issue	Research Design, Identification Strategy

Correlation v.s. Causality

- Omitted variable bias is related to a well-known argument of "Correlation or Causality".
- Example: Does the education indeed affect your wage, or the unobserved ability affects both the ducation and the wage, leading to correlation between education and wage?

	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
000	000000	00000000	00000

Section 3

Multicollinearity issue

Perfect Multicollinearity

 Perfect multicolinearity: One of the explanatory variable is a linear combination of other variables.

In this case, you cannot estimate all the coefficients.

For example,

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 \cdot x_2 + \epsilon_i$$

and $x_2 = 2x_1$.

• Cannot estimate both β_1 and β_2 .

Introduction	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy

Some Intuition

- Intuitively speaking, the regression coefficients are estimated by capturing how the variation of the explanatory variable x affects the variation of the dependent variable y
- Since x₁ and x₂ are moving together completely, we cannot say how much the variation of y is due to x₁ or x₂, so that β₁ and β₂.

Example: Dummy variable

Consider the dummy variables that indicate male and famale.

$$male_i = \begin{cases} 1 & if male \\ 0 & if female \end{cases}$$
, $female_i = \begin{cases} 1 & if female \\ 0 & if male \end{cases}$

If you put both male and female dummies into the regression,

$$y_i = \beta_0 + \beta_1 famale_i + \beta_2 male_i + \epsilon_i$$

Since $male_i + famale_i = 1$ for all *i*, we have perfect multicolinarity.

	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
000	000000	00000000	00000

- You should always omit the dummy variable of one of the groups.
- For example,

$$y_i = \beta_0 + \beta_1 famale_i + \epsilon_i$$

- In this case, β₁ is interpreted as the effect of being famale in comparison with male.
 - The omitted group is the basis for the comparison.

	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
000	000000	00000000	00000

You should the same thing when you deal with multiple groups such as

$$freshman_{i} = \begin{cases} 1 & if freshman \\ 0 & otherwise \end{cases}$$

$$sophomore_{i} = \begin{cases} 1 & if sophomore \\ 0 & otherwise \end{cases}$$

$$junior_{i} = \begin{cases} 1 & if junior \\ 0 & otherwise \end{cases}$$

$$senior_{i} = \begin{cases} 1 & if senior \\ 0 & otherwise \end{cases}$$

and

 $y_i = \beta_0 + \beta_1 freshman_i + \beta_2 sophomore_i + \beta_3 junior_i + \epsilon_i$

Imperfect multicollinearity.

- Though not perfectly co-linear, the correlation between explanatory variables might be very high, which we call imperfect multicollinearity.
- How does this affect the OLS estimator?
- To see this, we consider the following simple model (with homoskedasticity)

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i, V(\epsilon_i) = \sigma^2$$

000 000000 00000000 00000		Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
	000	000000	000000000	00000

You can show that the conditional variance (not asymptotic variance) is given by

$$\mathcal{N}(\hat{eta}_1|X) = rac{\sigma^2}{\mathcal{N}\cdot\hat{\mathcal{V}}(x_{1i})\cdot(1-R_1^2)}$$

where $\hat{V}(x_{1i})$ is the sample variance

$$\hat{V}(x_{1i}) = \frac{1}{N} \sum (x_{1i} - \bar{x_1})^2$$

and R_1^2 is the R-squared in the following regression of x_2 on x_1 .

$$x_{1i} = \pi_0 + \pi_1 x_{2i} + u_i$$

Introduction	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy 00000
000	000000	00000000●	

• The variance of the OLS estimator $\hat{\beta}_1$ is small if

- 1. *N* is large (i.e., more observations!)
- 2. $\hat{V}(x_{1i})$ is large (more variation in x_{1i} !)
- 3. R_1^2 is small.
- Here, high R_1^2 means that x_{1i} is explained well by other variables in a linear way.
 - The extreme case is R₁² = 1, that is x_{1i} is the linear combination of other variables, implying perfect multicolinearity!!

	Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
000	000000	00000000	•0000

Section 4

Research Design, Identification Strategy

Introduction 000	Endogeneity 000000	Multicollinearity issue	Research Design, Identification Strategy $0 \bullet 000$

Guide for causal analysis.

- Suppose that you want to know the causal effect of X on Y
- **•** The variation of the variable of interest *X* is important.
- Two meanings:
 - 1. exogenous variation (i.e., uncorrelated with error term)
 - 2. large variance of the variable
- The former is a key for **mean independence assumption** (no bias).
- ► The latter is a key for **precise estimation** (smaller standard error).

Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
		00000

Point 1: Exogeneity of X

- Mean independence is a key for unbiased estimation.
- ▶ Hard to argue, as we have to discuss about **unobserved** factors.
- Strategy 1: Add control variables
 - The variable of interest should be uncorrelated with the error conditional on other variables (confounders).
 - How many variables do we need to add?
- Strategy 2: Find exogenous variation.
 - Randomized control trial (field experiment)
 - Natural experiment: The variable of interest determined as if it were in experiment.
 - Instrumental variable estimation: Another variable Z that is exogenous.

Endogeneity	Multicollinearity issue	Research Design, Identification Strategy
		00000

Point 2: Enough variation of X.

- ▶ With more variation in X, can precisely estimate the coefficient.
- The variation of the variable after controlling for other factors that affects y is also crucial
 - Remember $1 R_1^2$ above.
- If you include many control variables to deal with the omitted variable bias, you may end up having no independent variation of X.
- ▶ In such case, you cannot estimate the effect of *X* from the data.

Introduction 000	Endogeneity 000000	Multicollinearity issue	Research Design, Identification Strategy $0000 \bullet$

Summary

- To address research questions using data, it is important to find a good variation of the explanatory variable that you want to focus on.
- > This is often called **identification strategy** or **research design**.
- Identification strategy is context-specific. You should be familiar with the background knowledge of your study.