	Endogeneity	IV Idea		Conditions for IV
00	0000000	0000	0000	0000000

Instrumental Variable Estimation 1: Framework

Instructor: Yuta Toyama

Last updated: 2020-06-12

Introduction	Endogeneity	IV Idea		Conditions for IV
•0	0000000	0000	0000	0000000

Introduction

Introduction	Endogeneity	IV Idea		Conditions for IV
00	0000000	0000	0000	00000000

Introduction: Endogeneity Problem and its Solution

- When Cov(x_k, ϵ) = 0 does not hold, we have endogeneity problem
 We call such x_k an endogenous variable.
- > This chapter: instrumental variable estimation method
- The lecture plan
 - 1. More on endogeneity issues
 - 2. Framework
 - 3. Implementation in R
 - 4. Examples

	Endogeneity	IV Idea		Conditions for IV
00	•0000000	0000	0000	0000000

Endogeneity

Introduction End	dogeneity	IV Idea	IV framework	Conditions for IV
00 0 0	000000	0000	0000	0000000

Examples of Endogeneity Problem

Here, I explain a bit more about endogeneity problems.

- 1. Omitted variable bias
- 2. Measurement error
- 3. Simultaneity

Endogeneity	IV Idea	Conditions for IV
0000000		

More on Omitted Variable Bias

Remember the wage regression equation (true model)

$$\log W_i = \beta_0 + \beta_1 S_i + \beta_2 A_i + u_i$$
$$E[u_i | S_i, A_i] = 0$$

where W_i is wage, S_i is the years of schooling, and A_i is the ability.

Suppose that you omit A_i and run the following regression instead.

$$\log W_i = \alpha_0 + \alpha_1 S_i + v_i$$

Notice that $v_i = \beta_2 A_i + u_i$, so that S_i and v_i is likely to be correlated.

Endogeneity 000●0000	IV Idea 0000	IV framework 0000	Conditions for IV

- You might want to add more and more additional variables to capture the effect of ability.
 - Test scores, GPA, SAT scores, etc...
- However, can you make sure that S_i is indeed exogenous after adding many control variables?
- Multivariate regression cannot deal with the presence of unobserved heterogeneity that matters both in wage and years of schooling.

Endogeneity 0000●000	IV Idea 0000	IV framework 0000	Conditions for IV

Measurement error

- Reporting error, wrong understanding of the question, etc...
- Consider the regression

$$y_i = \beta_0 + \beta_1 x_i^* + \epsilon_i$$

▶ Here, we only observe *x_i* with error:

$$x_i = x_i^* + e_i$$

e_i is independent from ε_i and x_i^{*} (called classical measurement error)
 You can think e_i as a noise added to the data.

Endogeneity	IV Idea	Conditions for IV
00000000		

► The regression equation is

$$y_i = \beta_0 + \beta_1(x_i - e_i) + \epsilon_i$$

= $\beta_0 + \beta_1 x_i + (\epsilon_i - \beta_1 e_i)$

► Then we have correlation between x_i and the error $\epsilon_i - \beta_1 e_i$, violating the mean independence assumption

	Endogeneity	IV Idea		Conditions for IV
00	00000000	0000	0000	00000000

Simultaneity (or reverse causality)

- Dependent and explanatory variable are determined simultaneously.
- Consider the demand and supply curve

$$q^{d} = \beta_0^{d} + \beta_1^{d} p + \beta_2^{d} x + u^{d}$$
$$q^{s} = \beta_0^{s} + \beta_1^{s} p + \beta_2^{s} z + u^{s}$$

The equilibrium price and quantity are determined by q^d = q^s.
 In this case,

$$p = \frac{(\beta_2^{s} z - \beta_2^{d} z) + (\beta_0^{s} - \beta_0^{d}) + (u^{s} - u^{d})}{\beta_1^{d} - \beta_1^{s}}$$

implying the correlation between the price and the error term.

Putting this differently, the data points we observed is the intersection of these supply and demand curves.

 D_3

q

 D_2

	Endogeneity	IV Idea		Conditions for IV
00	0000000	● 000	0000	0000000

IV Idea

Endogeneity 0000000	IV Idea ○●○○	IV framework 0000	Conditions for IV

Idea of IV Regression

Let's start with a simple case.

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, Cov(x_i, \epsilon_i) \neq 0$$

Consider another variable z_i named instrumental variable (IV).

Instrumental variable z_i should satisfies the two conditions:

- 1. **Independence**: $Cov(z_i, \epsilon_i) = 0$. No correlation between IV and error.
- 2. **Relevance**: $Cov(z_i, x_i) \neq 0$. Correlation between IV and endogenous variable x_i .
- Idea: Use the variation of x_i induced by instrument z_i to estimate the direct (causal) effect of x_i on y_i, that is β₁!.

Endogeneity 0000000	IV Idea ⊙0●0	IV framework 0000	Conditions for IV

More on Idea

- 1. Intuitively, the OLS estimator captures the correlation between x and y.
- 2. If there is no correlation between x and ϵ , it captures the causal effect β_1 .
- 3. If not, the OLS estimator captures both direct and indirect effect, the latter of which is bias.
- 4. Now, let's capture the variation of x due to instrument z,
- Such a variation should exist under **relevance** assumption.
- Such a variation should not be correlated with the error under independence assumption
- 5. By looking at the correlation between such variation and y, you can get the causal effect β_1 .

	Endogeneity	IV Idea	IV framework	Conditions for IV
00	0000000	0000	0000	0000000

IV framework

	Endogeneity	IV Idea	IV framework	Conditions for IV
00	0000000	0000	0000	0000000

A general framework with multiple endogenous variables and multiple instruments.

Consider the model

 $Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_K X_{Ki} + \beta_{K+1} W_{1i} + \dots + \beta_{K+R} W_{Ri} + u_i,$

- Y_i is the dependent variable
 β₀,...,β_{K+R} are 1 + K + R unknown regression coefficients
 X_{1i},..., X_{Ki} are K endogenous regressors: Cov(X_{ki}, u_i) ≠ 0 for all k.
 W_{1i},..., W_{Ri} are R exogenous regressors which are uncorrelated with u_i. Cov(W_{ri}, u_i) = 0 for all r.
 u_i is the error term
- \blacktriangleright Z_{1i}, \ldots, Z_{Mi} are M instrumental variables

Endogeneity	IV Idea	IV framework	Conditions for IV
		0000	

Estimation by Two Stage Least Squares (2SLS)

Step 1: First-stage regression(s)

- Run an OLS regression for each of the endogenous variables (X_{1i},..., X_{ki}) on all instrumental variables (Z_{1i},..., Z_{mi}), all exogenous variables (W_{1i},..., W_{ri}) and an intercept.
- Compute the fitted values $(\widehat{X}_{1i}, \ldots, \widehat{X}_{ki})$.

Step 2: Second-stage regression

- Regress the dependent variable Y_i on the predicted values of all endogenous regressors $(\hat{X}_{1i}, \ldots, \hat{X}_{ki})$, all exogenous variables (W_{1i}, \ldots, W_{ri}) and an intercept using OLS.
- ▶ This gives $\hat{\beta}_0^{TSLS}, \ldots, \hat{\beta}_{k+r}^{TSLS}$, the 2SLS estimates of the model coefficients.

	Endogeneity 0000000	IV Idea 0000	IV framework 000●	Conditions for IV
Intuition				

- Consider a simple case with 1 endogenous variable and 1 IV.
- In the first stage, we estimate

$$x_i = \pi_0 + \pi_1 z_i + v_i$$

by OLS and obtain the fitted value $\hat{x}_i = \hat{\pi}_0 + \hat{\pi}_1 z_i$.

In the second stage, we estimate

$$y_i = \beta_0 + \beta_1 \widehat{x}_i + u_i$$

- Since x̂_i depends only on z_i, which is uncorrelated with u_i, the second stage can estimate β₁ without bias.
- Can you see the importance of both independence and relevance asssumption here? (More formal discussion later)

	Endogeneity	IV Idea		Conditions for IV
00	0000000	0000	0000	0000000

Conditions for $\ensuremath{\mathsf{IV}}$

	Endogeneity	IV Idea		Conditions for IV
00	0000000	0000	0000	0000000

Conditions for Valid IVs: Necessary condition

Depending on the number of IVs, we have three cases

- 1. Over-identification: M > K
- 2. Just identification: M = K
- 3. Under-identification: M < K

• The necessary condition is $M \ge K$.

We should have more IVs than endogenous variables!!

Endogeneity 0000000	IV Idea 0000	IV framework 0000	Conditions for IV

Sufficient condition

- In a general framework, the sufficient condition for valid instruments is given as follows.
 - 1. Independence: $Cov(Z_{mi}, \epsilon_i) = 0$ for all m.
 - 2. Relevance: In the second stage regression, the variables

$$\left(\widehat{X}_{1i},\ldots,\widehat{X}_{ki},W_{1i},\ldots,W_{ri},1\right)$$

are not perfectly multicollinear.

What does the relevance condition mean?

Endogeneity	IV Idea	Conditions for IV
		0000000

Relevance condition

In the simple example above, The first stage is

$$x_i = \pi_0 + \pi_1 z_i + v_i$$

and the second stage is

$$y_i = \beta_0 + \beta_1 \widehat{x}_i + u_i$$

The second stage would have perfect multicollinarity if $\pi_1 = 0$ (i.e., $\hat{x}_i = \pi_0$).

Endogeneity	IV Idea	Conditions for IV
		00000000

• Back to the general case, the first stage for X_k can be written as

 $X_{ki} = \pi_0 + \pi_1 Z_{1i} + \dots + \pi_M Z_{Mi} + \pi_{M+1} W_{1i} + \dots + \pi_{M+R} W_{Ri}$

and one of π_1, \dots, π_M should be non-zero.

Intuitively speaking, the instruments should be correlated with endogenous variables after controlling for exogenous variables

	Endogeneity	IV Idea		Conditions for IV
00	0000000	0000	0000	00000000

Check Instrument Validity: Relevance

- Instruments are weak if those instruments explain little variation in the endogenous variables.
- Weak instruments lead to
 - 1. imprecise estimates (higher standard errors)
 - 2. The asymptotic distribution would deviate from a normal distribution even if we have a large sample.

	Endogeneity	IV Idea		Conditions for IV
00	0000000	0000	0000	00000000

A rule of thumb to check the relevance conditions.

- ► Consider the case with one endogenous variable X_{1i}.
- The first stage regression

$$X_{k} = \pi_{0} + \pi_{1}Z_{1i} + \dots + \pi_{M}Z_{Mi} + \pi_{M+1}W_{1i} + \dots + \pi_{M+R}W_{Ri}$$

And test the null hypothesis

$$H_0: \pi_1 = \cdots = \pi_M = 0$$

 $H_1: otherwise$

- This is F test (test of joint hypothesis)
- If we can reject this, we can say no concern for weak instruments.
- A rule of thumbs is that the F statistic should be larger than 10.
- See Stock, Wright, and Yogo (2012)

	Endogeneity	IV Idea		Conditions for IV
00	0000000	0000	0000	0000000

Independence (Instrument exogeneity)

- Arguing for independence is hard and a key in empirical analysis.
- Justification of this assumption depends on a context, institutional features, etc...
- We will see some examples in the next chapter.