	Framework	Inference
000		

Panal Data 1: Framework

Instructor: Yuta Toyama

Last updated: 2020-06-21

Introduction	Framework		Inference
000	000000	0000	000

Introduction

Introduction	Framework		Inference
000	000000	0000	000

Contents

- ► Framework
- Cluster-Robust Standard Errors
- Implementation in R: felm command

Introduction	Framework	Inference
000		

Introduction

- Panel data
 - n cross-sectional units at T time periods
 - Dataset (X_{it}, Y_{it})

Examples:

- 1. Person i's income in year t.
- 2. Vote share in county i for the presidential election year t.
- 3. Country i's GDP in year t.

Panel data is useful

- 1. More variation (both cross-sectional and temporal variation)
- 2. Can deal with time-invariant unobserved factors.
- 3. (Not focus in this course) Dynamics of individual over time.

	Framework		Inference
000	00000	0000	000

Framework

Framework	Inference
00000	

Framework

Consider the model

$$y_{it} = \beta' x_{it} + \epsilon_{it}, E[\epsilon_{it}|x_{it}] = 0$$

where x_{it} is a k-dimensional vector

- ► If there is no correlation between x_{it} and e_{it}, you can estimate the model by OLS (pooled OLS)
- A natural concern here is the omitted variable bias.

	Framework		Inference
000	00000	0000	000

We now consider that \(\epsilon_{it}\) is written as

 $\epsilon_{it} = \alpha_i + u_{it}$

where α_i is called **unit fixed effect**, which is the time-invariant unobserved heterogeneity.

With panel data, we can control for the unit fixed effects by incorporating the dummy variable for each unit *i*!

$$y_{it} = \beta' x_{it} + \gamma_2 D 2_i + \dots + \gamma_n D n_i + u_{it}$$

where DI_i takes 1 if I = i.

Notice that we cannot do this for the cross-section data!

We write the model with unit FE as

$$y_{it} = \beta' x_{it} + \alpha_i + u_{it}$$

	Framework		Inference
000	000000	0000	000

Framework

The fixed effects model

$$y_{it} = \beta' x_{it} + \alpha_i + u_{it}$$

Assumptions:

- 1. u_{it} is uncorrelated with (x_{i1}, \dots, x_{iT}) , that is $E[u_{it}|x_{i1}, \dots, x_{iT}] = 0$
- 2. (Y_{it}, x_{it}) are independent across individual *i*.
- 3. No outliers
- 4. No Perfect multicollinarity

	Framework		Inference
000	000000	0000	000

Assumption 1: Mean independence

- Assumption 1 is weaker than the assumption in OLS, because the time-invariant factor α_i is captured by the fixed effect.
 - Example: Unobserved ability is caputured by α_i .

	Framework		Inference
000	000000	0000	000

Assumption 4: No Perfect Multicolinear.

Consider the following regression with unit FE

 $wage_{it} = \beta_0 + \beta_1 experience_{it} + \beta_2 male_i + \beta_3 white_i + \alpha_i + u_{it}$

experience_{it} measures how many years worker i has worked before at time t.

- Multicollinearity issue because of *male*; and *white*;.
- Intuitively, we cannot estimate the coefficient β₂ and β₃ because those time-invariant variables are completely captured by the unit fixed effect α_i.

	Framework	Estimation	Inference
000	000000	0000	000

Estimation

Estimation (within transformation)

- Can estimate the model by adding dummy variables for each individual.
 - least square dummy variables (LSDV) estimator.
 - Computationally demanding with many cross-sectional units
- We often use the following within transformation.
- Define the new variable \tilde{Y}_{it} as

$$ilde{Y}_{it} = Y_{it} - ar{Y}_i$$

where $\bar{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}$.

• Applying the within transformation, can eliminate the unit FE α_i

$$ilde{Y}_{it} = eta' ilde{X}_{it} + ilde{u}_{it}$$

Then use the OLS estimator to the above equation!.

	Framework	Estimation	Inference
000	000000	0000	000

Importance of within variation in estimation

The variation of the explanatory variable is key for precise estimation.
Remember the lecture "Regression 3"

Within transformation eliminates the time-invariant unobserved factor,
a large source of endogeneity in many situations.

- But, within transformation also absorbs the variation of X_{it} .
- Remember that

$$\tilde{X}_{it} = X_{it} - \bar{X}_i$$

The transformed variable X_{it} has the variation over time t within unit i.
If X_{it} is fixed over time within unit i, X_{it} = 0, so that no variation.

	Framework	Estimation	Inference
000	000000	0000	000

Other things to note

1. You can also add time fixed effects (FE)

$$y_{it} = \beta' x_{it} + \alpha_i + \gamma_t + u_{it}$$

- The regression above controls for both time-invariant individual heterogeneity and (unobserved) aggregate year shock.
- Panel data is useful to capture various unobserved shock by including fixed effects.
- 2. You can use IV regression with panel data.
 - The argument for the conditions of instruments should consider the presence of fixed effects.
 - Correlation (or uncorrelatedness) after controlling for the fixed effects.

	Framework		Inference
000	000000	0000	000

Inference

Cluster-Robust Standard Errors

- So far, we considered the two cases on the error structure
 - 1. Homoskedasticity $Var(u_i) = \sigma^2$
 - 2. Heteroskedasitcity $Var(u_i|x_i) = \sigma(x_i)$
- ▶ In the above case, we still assume the independence between observations, that is $Cov(u_i, u_{i'}) = 0$.

Introduction	Framework	Estimation	Inference
000	000000	0000	○○●

- ► In the panel data setting, we need to consider the **autocorrelation**.
 - the correlation between u_{it} and $u_{it'}$ across periods for each individual *i*.

Cluster-robust standard error considers such autocorrelation.

The cluster is unit i. The errors within cluster are allowed to be correlated.

▶ For a more discussion, see Chapter 8 in "Mostly Harmless Econometrics".