lfe
package.Fatalities
in AER
package.
## Warning: package 'AER' was built under R version 3.6.3
## Loading required package: car
## Warning: package 'car' was built under R version 3.6.3
## Loading required package: carData
## Loading required package: lmtest
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: survival
## 'data.frame': 336 obs. of 34 variables:
## $ state : Factor w/ 48 levels "al","az","ar",..: 1 1 1 1 1 1 1 2 2 2 ...
## $ year : Factor w/ 7 levels "1982","1983",..: 1 2 3 4 5 6 7 1 2 3 ...
## $ spirits : num 1.37 1.36 1.32 1.28 1.23 ...
## $ unemp : num 14.4 13.7 11.1 8.9 9.8 ...
## $ income : num 10544 10733 11109 11333 11662 ...
## $ emppop : num 50.7 52.1 54.2 55.3 56.5 ...
## $ beertax : num 1.54 1.79 1.71 1.65 1.61 ...
## $ baptist : num 30.4 30.3 30.3 30.3 30.3 ...
## $ mormon : num 0.328 0.343 0.359 0.376 0.393 ...
## $ drinkage : num 19 19 19 19.7 21 ...
## $ dry : num 25 23 24 23.6 23.5 ...
## $ youngdrivers: num 0.212 0.211 0.211 0.211 0.213 ...
## $ miles : num 7234 7836 8263 8727 8953 ...
## $ breath : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ jail : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
## $ service : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
## $ fatal : int 839 930 932 882 1081 1110 1023 724 675 869 ...
## $ nfatal : int 146 154 165 146 172 181 139 131 112 149 ...
## $ sfatal : int 99 98 94 98 119 114 89 76 60 81 ...
## $ fatal1517 : int 53 71 49 66 82 94 66 40 40 51 ...
## $ nfatal1517 : int 9 8 7 9 10 11 8 7 7 8 ...
## $ fatal1820 : int 99 108 103 100 120 127 105 81 83 118 ...
## $ nfatal1820 : int 34 26 25 23 23 31 24 16 19 34 ...
## $ fatal2124 : int 120 124 118 114 119 138 123 96 80 123 ...
## $ nfatal2124 : int 32 35 34 45 29 30 25 36 17 33 ...
## $ afatal : num 309 342 305 277 361 ...
## $ pop : num 3942002 3960008 3988992 4021008 4049994 ...
## $ pop1517 : num 209000 202000 197000 195000 204000 ...
## $ pop1820 : num 221553 219125 216724 214349 212000 ...
## $ pop2124 : num 290000 290000 288000 284000 263000 ...
## $ milestot : num 28516 31032 32961 35091 36259 ...
## $ unempus : num 9.7 9.6 7.5 7.2 7 ...
## $ emppopus : num 57.8 57.9 59.5 60.1 60.7 ...
## $ gsp : num -0.0221 0.0466 0.0628 0.0275 0.0321 ...
## Warning: package 'dplyr' was built under R version 3.6.3
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Fatalities %>%
mutate(fatal_rate = fatal / pop * 10000) %>%
filter(year == "1988") -> data
plot(x = data$beertax,
y = data$fatal_rate,
xlab = "Beer tax (in 1988 dollars)",
ylab = "Fatality rate (fatalities per 10000)",
main = "Traffic Fatality Rates and Beer Taxes in 1988",
pch = 20,
col = "steelblue")
felm
command in lfe
package.
## Warning: package 'lfe' was built under R version 3.6.2
## Loading required package: Matrix
##
## Attaching package: 'lfe'
## The following object is masked from 'package:lmtest':
##
## waldtest
Fatalities %>%
mutate(fatal_rate = fatal / pop * 10000) -> data
# OLS
result_ols <- felm( fatal_rate ~ beertax | 0 | 0 | 0, data = data )
summary(result_ols, robust = TRUE)
##
## Call:
## felm(formula = fatal_rate ~ beertax | 0 | 0 | 0, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.09060 -0.37768 -0.09436 0.28548 2.27643
##
## Coefficients:
## Estimate Robust s.e t value Pr(>|t|)
## (Intercept) 1.85331 0.04713 39.324 < 2e-16 ***
## beertax 0.36461 0.05285 6.899 2.64e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5437 on 334 degrees of freedom
## Multiple R-squared(full model): 0.09336 Adjusted R-squared: 0.09065
## Multiple R-squared(proj model): 0.09336 Adjusted R-squared: 0.09065
## F-statistic(full model, *iid*):34.39 on 1 and 334 DF, p-value: 1.082e-08
## F-statistic(proj model): 47.59 on 1 and 334 DF, p-value: 2.643e-11
# State FE
result_stateFE <- felm( fatal_rate ~ beertax | state | 0 | state, data = data )
summary(result_stateFE, robust = TRUE)
##
## Call:
## felm(formula = fatal_rate ~ beertax | state | 0 | state, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.58696 -0.08284 -0.00127 0.07955 0.89780
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## beertax -0.6559 0.2919 -2.247 0.0294 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1899 on 287 degrees of freedom
## Multiple R-squared(full model): 0.905 Adjusted R-squared: 0.8891
## Multiple R-squared(proj model): 0.04074 Adjusted R-squared: -0.1197
## F-statistic(full model, *iid*):56.97 on 48 and 287 DF, p-value: < 2.2e-16
## F-statistic(proj model): 5.05 on 1 and 47 DF, p-value: 0.02936
# State and Year FE
result_bothFE <- felm( fatal_rate ~ beertax | state + year | 0 | state, data = data )
summary(result_bothFE, robust = TRUE)
##
## Call:
## felm(formula = fatal_rate ~ beertax | state + year | 0 | state, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.59556 -0.08096 0.00143 0.08234 0.83883
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## beertax -0.6400 0.3539 -1.809 0.0769 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1879 on 281 degrees of freedom
## Multiple R-squared(full model): 0.9089 Adjusted R-squared: 0.8914
## Multiple R-squared(proj model): 0.03606 Adjusted R-squared: -0.1492
## F-statistic(full model, *iid*):51.93 on 54 and 281 DF, p-value: < 2.2e-16
## F-statistic(proj model): 3.271 on 1 and 47 DF, p-value: 0.07692
Report results using stargazer. Note that - Setting “se” option reports Heteroskedasticity-robust SE for the first column. - Automatically report Cluster-Robust SE for the second and the third columns.
list_StateFE = c("State FE", "No", "Yes", "Yes")
list_yearFE = c("Year FE", "No", "No", "Yes")
stargazer::stargazer(result_ols, result_stateFE, result_bothFE,
se = list(result_ols$rse),
add.lines = list(list_StateFE, list_yearFE),
type = "text")
##
## ======================================================================
## Dependent variable:
## --------------------------------------------------
## fatal_rate
## (1) (2) (3)
## ----------------------------------------------------------------------
## beertax 0.365*** -0.656** -0.640*
## (0.053) (0.292) (0.354)
##
## Constant 1.853***
## (0.047)
##
## ----------------------------------------------------------------------
## State FE No Yes Yes
## Year FE No No Yes
## Observations 336 336 336
## R2 0.093 0.905 0.909
## Adjusted R2 0.091 0.889 0.891
## Residual Std. Error 0.544 (df = 334) 0.190 (df = 287) 0.188 (df = 281)
## ======================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
# State FE w.o. CRS
result_wo_CRS <- felm( fatal_rate ~ beertax | state | 0 | 0, data = data )
# State FE w. CRS
result_w_CRS <- felm( fatal_rate ~ beertax | state | 0 | state, data = data )
# Report heteroskedasticity robust standard error and cluster-robust standard errors
stargazer::stargazer(result_wo_CRS, result_w_CRS, type = "text", se = list(result_wo_CRS$rse),
add.lines = list(c("SE", "Heteroskedasticity-Robust", "Cluster-Robust")))
##
## =======================================================================
## Dependent variable:
## ----------------------------------------
## fatal_rate
## (1) (2)
## -----------------------------------------------------------------------
## beertax -0.656*** -0.656**
## (0.203) (0.292)
##
## -----------------------------------------------------------------------
## SE Heteroskedasticity-Robust Cluster-Robust
## Observations 336 336
## R2 0.905 0.905
## Adjusted R2 0.889 0.889
## Residual Std. Error (df = 287) 0.190 0.190
## =======================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
# load the data set and get an overview
library(AER)
data("CigarettesSW")
CigarettesSW %>%
mutate( rincome = (income / population) / cpi) %>%
mutate( rprice = price / cpi ) %>%
mutate( salestax = (taxs - tax) / cpi ) %>%
mutate( cigtax = tax/cpi ) -> Cigdata
# OLS
result_1 <- felm( log(packs) ~ log(rprice) + log(rincome) | 0 | 0 | state, data = Cigdata )
# State FE
result_2 <- felm( log(packs) ~ log(rprice) + log(rincome) | state | 0 | state, data = Cigdata )
# IV without FE
result_3 <- felm( log(packs) ~ log(rincome) | 0 | (log(rprice) ~ salestax + cigtax) | state, data = Cigdata )
# IV with FE
result_4 <- felm( log(packs) ~ log(rincome) | state | (log(rprice) ~ salestax + cigtax) | state, data = Cigdata )
stargazer::stargazer(result_1, result_2, result_3, result_4, type = "text")
##
## ===================================================================================
## Dependent variable:
## ---------------------------------------------------------------
## log(packs)
## (1) (2) (3) (4)
## -----------------------------------------------------------------------------------
## log(rprice) -1.334*** -1.210***
## (0.174) (0.143)
##
## log(rincome) 0.318 0.121 0.257 0.204
## (0.212) (0.218) (0.204) (0.238)
##
## `log(rprice)(fit)` -1.229*** -1.268***
## (0.183) (0.162)
##
## Constant 10.067*** 9.736***
## (0.464) (0.555)
##
## -----------------------------------------------------------------------------------
## Observations 96 96 96 96
## R2 0.552 0.966 0.549 0.966
## Adjusted R2 0.542 0.929 0.539 0.929
## Residual Std. Error 0.165 (df = 93) 0.065 (df = 46) 0.165 (df = 93) 0.065 (df = 46)
## ===================================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
felm
commandstargazer
# Run felm command without specifying cluster.
result_1 <- felm( log(packs) ~ log(rprice) + log(rincome) | 0 | 0 | state, data = Cigdata )
# `result_1$rse` contains heteroskedasticity robust standard error. Put this into `se` option in `stargazer`.
stargazer::stargazer(result_1, type = "text",
se = list(result_1$rse ) )
##
## ===============================================
## Dependent variable:
## ---------------------------
## log(packs)
## -----------------------------------------------
## log(rprice) -1.334***
## (0.154)
##
## log(rincome) 0.318**
## (0.154)
##
## Constant 10.067***
## (0.502)
##
## -----------------------------------------------
## Observations 96
## R2 0.552
## Adjusted R2 0.542
## Residual Std. Error 0.165 (df = 93)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
felm
# Run felm command without specifying cluster.
result_1 <- felm( packs ~ rprice + rincome | 0 | 0 | 0, data = Cigdata )
# The following tests H0: _b[rincome] = 0 & _b[rprice] = 0
ftest1 = waldtest(result_1, ~ rincome | rprice )
ftest1
## p chi2 df1 p.F F df2
## 4.180596e-22 9.845284e+01 2.000000e+00 2.621701e-15 4.922642e+01 9.300000e+01
## attr(,"formula")
## ~rincome | rprice
## <environment: 0x000000001eb84540>
# ftest[5] corresponds to F-value
fval1 = ftest1[5]
# The following tests H0: _b[rincome] - 1 = 0 & _b[rprice] = 0
ftest2 = waldtest(result_1, ~ rincome - 1 | rprice )
ftest2
## p chi2 df1 p.F F df2
## 2.048665e-24 1.090897e+02 2.000000e+00 2.121544e-16 5.454485e+01 9.300000e+01
## attr(,"formula")
## ~rincome - 1 | rprice
## <environment: 0x000000001ee6a330>