Program Evaluation	RCT Framework	Health Insurance Experiment

Program Evaluation (Causal Inference) 1: Introduction and Randomized Control Trial

Instructor: Yuta Toyama

Last updated: 2020-06-22

Section 1

Introduction

Introduction	Program Evaluation	RCT Framework	Health Insurance Experiment
0000			

Introduction

Program Evaluation, or Causal Inference

Estimation of "treatment effect" of some intervention (typically binary)

Example:

- effects of job training on wage
- effects of advertisement on purchase behavior
- effects of distributing mosquito net on children's school attendance

Difficulty: treatment is endogenous decision

- selection bias, omitted variable bias.
- especially in observational data (in comparison with experimental data)

Introduction 0000	Program Evaluation	RCT Framework 00000	Health Insurance Experiment
Overview			

- Introduce Rubin's causal model (potential outcome framework)
 - Generalization of the linear regression model: Nonparametric

Solutions to the selection bias

- 1. Randomized control trial
- 2. Matching
- 3. Instrumental Variable Estimation
- 4. Difference-in-differences
- 5. Regression Discontinuity Design
- 6. Instrumental Variable
- Note: IV estimation in program evaluation framework involves with the argument of local average treatment effect (LATE), which is beyond the scope of this course.

Introduction	Program Evaluation	RCT Framework	Health Insurance Experiment
0000			

Reference

- Angrist and Pischke:
 - Mostly harmless econometrics : advanced undergraduate to graduate students
 - Mastering Metrics: good for undergraduate students after taking econometrics course.
- Ito: Data Bunseki no Chikara (in Japanese)

Program Evaluation	RCT Framework	Health Insurance Experiment
0000000		

Section 2

Program Evaluation

Introduction	Program Evaluation	RCT Framework	Health Insurance Experiment
0000	0●000000	00000	

Framework

- Y_i: observed outcome for person i
- ► *D_i*: treatment status

$$D_i = egin{cases} 1 & ext{treated} (ext{treatment group}) \ 0 & ext{not treated} (ext{control group}) \end{cases}$$

Define potential outcomes

- Y_{1i}: outcome for i when she is treated (treatment group)
- ▶ Y_{0i}: outcome for *i* when she is not treated (control group)

With this, we can write

$$egin{aligned} Y_i &= D_i Y_{1i} + (1 - D_i) Y_{0i} \ &= egin{cases} Y_{1i} & \mbox{if} \ D_i &= 1 \ Y_{0i} & \mbox{if} \ D_i &= 0 \end{aligned}$$

Introduction 0000	Program Evaluation	RCT Framework 00000	Health Insurance Experiment

Key Points

- Point 1: Fundamental problem of program evaluation
 - We can observe (Y_i, D_i) , but never observe Y_{0i} and Y_{1i} simultaneously.
 - Counterfactual outcome.

Point 2: Stable Unit Treatment Value Assumption (SUTVA)

- Treatment effect for a person does not depend on the treatment status of other people.
- Rules out externality / general equilibrium effects.
 - Ex: If everyone takes the job training, the equilibrium wage would change, which affects the individual outcome.

Introduction 0000	Program Evaluation	RCT Framework 00000	Health Insurance Experiment

Parameters of Interest

- Define the individual treatment effect $Y_{1i} Y_{0i}$
 - Key: allowing for heterogenous effects across people
- Individual treatment effect cannot be identified due to the fundamental problem.
- Instead, we focus on the average effects
 - Average treatment effect: $ATE = E[Y_{1i} Y_{0i}]$
 - Average treatment effect on treated: $ATT = E[Y_{1i} Y_{0i}|D_i = 1]$
 - Average treatment effect on untreated: $ATT = E[Y_{1i} Y_{0i}|D_i = 0]$
 - Average treatment effect conditional on covariates X_i :
 - $ATE(x) = E[Y_{1i} Y_{0i}|D_i = 1, X_i = x]$

Relation to Regression Analysis

Assume that

- 1. linear (parametric) structure in Y_{0i} , and
- 2. constant (homogenous) treatment effect,

$$Y_{0i} = \beta_0 + \epsilon_i$$

$$Y_{1i} - Y_{0i} = \beta_1$$

You will have

$$Y_i = \beta_0 + \beta_1 D_i + \epsilon_i$$

Program evaluation framework is nonparametric in nature.

γ

Though, in practice, estimation of treatment effect relies on a parametric specification.

Introduction 0000	Program Evaluation	RCT Framework 00000	Health Insurance Experiment

Selection Bias

- Compare average outcomes between treatment and control group
- Does this tell you average treatment effect? No in general!

$$\underbrace{E[Y_i|D_i=1] - E[Y_i|D_i=0]}_{\text{rimula}} = E[Y_{1i}|D_i=1] - E[Y_{0i}|D_i=0]$$

simple comparison

$$=\underbrace{E[Y_{1i} - Y_{0i}|D_i = 1]}_{ATT} + \underbrace{E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]}_{selection \ bias}$$

Program Evaluation	RCT Framework	Health Insurance Experiment
00000000		

- The bias term $E[Y_{0i}|D_i = 1] E[Y_{0i}|D_i = 0]$
 - not zero in general: Those who are taking the job training would do a good job even without job training
 - Cannot observe $E[Y_{0i}|D_i = 1]$: the outcome of people in treatment group when they are NOT treated (counterfactual).

Introduction	Program Evaluation	RCT Framework	Health Insurance Experiment
0000	0000000●	00000	

Solutions

- Randomized Control Trial (A/B test):
 - Assign treatment D_i randomly
- Matching (regression):
 - Using observed characteristics of individuals to control for selection bias
- Instrumental variable
 - Use the variable that affects treatment status but is not correlated to the outcome
- Difference-in-differences
 - Use the panel data to control for individual heterogeneity by fixed effects.
- Regression Discontinuity Design
 - Exploit the randomness around the thresholds.
- Others: Bound approach, synthetic control method, regression kink design, etc..

Program Evaluation	RCT Framework	Health Insurance Experiment
	•0000	

Section 3

RCT Framework

Introduction	Program Evaluation	RCT Framework	Health Insurance Experiment
0000	00000000	0●000	

What is RCT ?

- RCT: Randomized Controlled Trial
- Measure the effect of "treatment" by
 - 1. randomly assigning treatment to a particular group (treatment group)
 - 2. measure outcomes of subjects in both treatment and "control" group.
 - 3. the difference of outcomes between these two groups is "treatment" effect.
- Starts with clinical trial: measure the effects of medicine.

Introduction 0000	Program Evaluation	RCT Framework 00●00	Health Insurance Experiment

Examples

- Development economics: Esther Duflo "Social experiments to fight poverty"
 - https://www.ted.com/talks/esther_duflo_social_experiments_to_fight_ poverty?language=en
- Health economics: Amy Finkelstein "Randomized evaluations & the power of evidence | Amy Finkelstein"
 - https://www.youtube.com/watch?v=N8rD844McrA

Framework and Identification

Key assumption: Treatment D_i is independent with potential outcomes (Y_{0i}, Y_{1i})

 $D_i \perp (Y_{0i}, Y_{1i})$

Under this assumption,

$$E[Y_{1i}|D_i = 1] = E[Y_{1i}|D_i = 0] = E[Y_{1i}]$$
$$E[Y_{0i}|D_i = 1] = E[Y_{0i}|D_i = 0] = E[Y_{0i}]$$

The sample selection does not exist! Thus,

$$\underbrace{E[Y_i|D_i=1] - E[Y_i|D_i=0]}_{simple \ comparison} = \underbrace{E[Y_{1i} - Y_{0i}|D_i=1]}_{ATT}$$

Introduction	Program Evaluation	RCT Framework	Health Insurance Experiment
0000	0000000	0000●	
Estimation			

Difference of the sample average is consistent estimator for the ATT

$$\frac{\frac{1}{N}\sum_{i=1}^{N}Y_{i}\cdot\mathbf{1}\{D_{i}=1\}}{\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}\{D_{i}=1\}} - \frac{\frac{1}{N}\sum_{i=1}^{N}Y_{i}\cdot\mathbf{1}\{D_{i}=0\}}{\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}\{D_{i}=0\}}$$

> You can run a linear regression of Y on D along with other covariates X_i

$$Y_i = \beta_0 + \beta_1 D_i + \beta' X_i + \epsilon_i$$

Section 4

Health Insurance Experiment

Example: RAND Health Insurance Experiment (HIE)

- Taken from Angrist and Pischke (2014, Sec 1.1)
- 1974-1982, 3958 people, age 14-61
- Randomly assigned to one of 14 insurance plans.
 - No insurance premium
 - Different provisions related to cost sharing
- 4 categories
 - Free
 - Co-insurance: Pay 25-50% of costs
 - Deductible: Pay 95% of costs, up to \$150 per person (\$450 per family)
 - Catastrophic coverage: 95% of health costs. No upper limit. Approximate "no insurance"

First step: Balance Check

	Means	Differences between plan groups			
	Catastrophic	Deductible –	Coinsurance –	Free –	Any insurance
	plan	catastrophic	catastrophic	catastrophic	catastrophic
	(1)	(2)	(3)	(4)	(5)
	Α.	Demographic o	characteristics		
Female	.560	023 (.016)	025 (.015)	038 (.015)	030 (.013)
Nonwhite	.172	019 (.027)	027 (.025)	028 (.025)	025 (.022)
Age	32.4	.56	.97	.43	.64
	[12.9]	(.68)	(.65)	(.61)	(.54)
Education	12.1	16	06	26	17
	[2.9]	(.19)	(.19)	(.18)	(.16)
Family income	31,603	-2,104	970	-976	-654
	[18,148]	(1,384)	(1,389)	(1,345)	(1,181)
Hospitalized last year	.115	.004 (.016)	002 (.015)	.001 (.015)	.001 (.013)
	Р	. Baseline heal	th variables		
General health index	70.9	-1.44	.21	-1.31	93
	[14.9]	(.95)	(.92)	(.87)	(.77)
Cholesterol (mg/dl)	207	-1.42	-1.93	-5.25	-3.19
	[40]	(2.99)	(2.76)	(2.70)	(2.29)
Systolic blood	122	2.32	.91	1.12	1.39
pressure (mm Hg)	[17]	(1.15)	(1.08)	(1.01)	(.90)
Mental health index	73.8	12	1.19	.89	.71
	[14.3]	(.82)	(.81)	(.77)	(.68)
Number enrolled	759	881	1,022	1,295	3,198

TABLE 1.2

Notes: This table describes the demographic characteristics and baseline health of subjects in the RAND Health Insurance Experiment (HIE). Column (1) shows the average for the group assigned catastrophic coverage. Columns (2)–(5) compare averages in the deductible, cost-shring, free cars, and any insurance groups with the average in column (1). Standard errors are reported in parentheses in columns (2)–(5); standard deviations are reported in brackets in columns (2)–(5).

Results of RAND HIE

	Means	Differences between plan groups			
	Catastrophic	Deductible –	Coinsurance –	Free –	Any insurance
	plan	catastrophic	catastrophic	catastrophic	catastrophic
	(1)	(2)	(3)	(4)	(5)
		A. Health-	care use		
Face-to-face visits	2.78	.19	.48	1.66	.90
	[5.50]	(.25)	(.24)	(.25)	(.20)
Outpatient expenses	248	42	60	169	101
	[488]	(21)	(21)	(20)	(17)
Hospital admissions	.099	.016	.002	.029	.017
	[.379]	(.011)	(.011)	(.010)	(.009)
Inpatient expenses	388	72	93	116	97
	[2,308]	(69)	(73)	(60)	(53)
Total expenses	636	114	152	285	198
	[2,535]	(79)	(85)	(72)	(63)
		B. Health o	utcomes		
General health index	68.5	87	.61	78	36
	[15.9]	(.96)	(.90)	(.87)	(.77)
Cholesterol (mg/dl)	203	.69	-2.31	-1.83	-1.32
	[42]	(2.57)	(2.47)	(2.39)	(2.08)
Systolic blood	122	1.17	-1.39	52	36
pressure (mm Hg)	[19]	(1.06)	(.99)	(.93)	(.85)
Mental health index	75.5	.45	1.07	.43	.64
	[14.8]	(.91)	(.87)	(.83)	(.75)
Number enrolled	759	881	1,022	1,295	3,198

TABLE 1.4

Notes: This table reports means and treatment effects for health expenditure and health outcomes in the RAND Health Insurance Experiment (HIE). Column (1) shows the average for the group assigned catastrophic coverage. Columns (2)–(5) compare averages in the deductible, cost-sharing, free care, and any insurance groups with the average incolumn (1). Standard errors are reported in parentheses in columns (2)–(5) standard deviations are reported in brackets in the acted of the standard deviation of the standard deviations.