	Identification	
00	0000	00000000

Program Evaluation (Causal Inference) 2: Matching

Instructor: Yuta Toyama

Last updated: 2020-06-22

Section 1

Introduction

Introduction: Matching Estimator

- Idea: Compare individuals with the same characteristics X across treatment and control groups
- Key assumption: Treatment is random once we control for the observed characteristics.
- Do you remember we already learnt a similar idea before?

	Identification	
00	0000	00000000

Section 2

Identification

ldentification ⊙●⊙⊙	Estimation 00000000

Matching

- Let X_i denote the observed characteristics:
 - age, income, education, race, etc..
- Assumption 1:

$$D_i \perp (Y_{0i}, Y_{1i}) | X_i$$

- Conditional on X_i, no selection bias.
- Selection on observables assumption / ignorability
- Assumption 2: Overlap assumption

$$P(D_i = 1 | X_i = x) \in (0, 1) \ \forall x$$

- Given x, we should be able to observe people from both control and treatment group.
- We call $P(D_i = 1 | X_i = x)$ propensity score.

Identification 00●0	Estimation 00000000

Identification

The assumption implies that

$$E[Y_{1i}|D_i = 1, X_i] = E[Y_{1i}|D_i = 0, X_i] = E[Y_{1i}|X_i]$$
$$E[Y_{0i}|D_i = 1, X_i] = E[Y_{0i}|D_i = 0, X_i] = E[Y_{0i}|X_i]$$

• The ATT for $X_i = x$ is given by

$$E[Y_{1i} - Y_{0i}|D_i = 1, X_i] = E[Y_{1i}|D_i = 1, X_i] - E[Y_{0i}|D_i = 1, X_i]$$

= $E[Y_i|D_i = 1, X_i] - E[Y_{0i}|D_i = 0, X_i]$
= $\underbrace{E[Y_i|D_i = 1, X_i]}_{\text{avg with } X_i \text{ in treatment}} - \underbrace{E[Y_i|D_i = 0, X_i]}_{\text{avg with } X_i \text{ in control}}$

- The components in the last line are identified (can be estimated).
- Intuition: Comparing the outcome across control and treatment groups after conditioning on X_i

Identification	
0000	

$\mathsf{ATT}\xspace$ and $\mathsf{ATE}\xspace$

► ATT is given by

$$ATT = E[Y_{1i} - Y_{0i}|D_i = 1]$$

= $\int E[Y_{1i} - Y_{0i}|D_i = 1, X_i = x]f_{X_i}(x|D_i = 1)dx$
= $E[Y_i|D_i = 1] - \int (E[Y_i|D_i = 0, X_i = x])f_{X_i}(x|D_i = 1)$

$$ATE = E[Y_{1i} - Y_{0i}]$$

= $\int E[Y_{1i} - Y_{0i}|X_i = x]f_{X_i}(x)dx$
= $\int E[Y_i|D_i = 1, X_i = x]f_{X_i}(x)dx$
= $+ \int E[Y_i|D_i = 0, X_i = x]f_{X_i}(x)dx$

Section 3

Estimation

Estimation Methods

• We need to estimate $E[Y_i|D_i = 1, X_i = x]$ and $E[Y_i|D_i = 0, X_i = x]$

Several ways to implement the above idea

- 1. Regression: Nonparametric and Parametric
- 2. Nearest neighborhood matching
- 3. Propensity Score Matching

Identification 0000	Estimation 0000000

Approach 1: Regression, or Analogue Approach

- Let $\hat{\mu}_k(x)$ be an estimator of $\mu_k(x) = E[Y_i | D_i = k, X_i = x]$ for $k \in \{0, 1\}$
- The analog estimators are

$$A\hat{T}E = \frac{1}{N} \sum_{i=1}^{N} \hat{\mu}_1(X_i) - \hat{\mu}_0(X_i)$$
$$A\hat{T}T = \frac{N^{-1} \sum_{i=1}^{N} D_i(Y_i - \hat{\mu}_0(X_i))}{N^{-1} \sum_{i=1}^{N} D_i}$$

• How to estimate $\mu_k(x) = E[Y_i | D_i = k, X_i = x]$?

Identification	Estimation
	00000000

Nonparametric Estimation

- Suppose that $X_i \in \{x_1, \cdots, x_K\}$ is discrete with small K
 - Ex: two demographic characteristics (male/female, white/non-white).
 K = 4
- Then, a nonparametric binning estimator is

$$\hat{\mu}_k(x) = \frac{\sum_{i=1}^N \mathbf{1}\{D_i = k, X_i = x\}Y_i}{\sum_{i=1}^N \mathbf{1}\{D_i = k, X_i = x\}}$$

▶ Here, I do not put any parametric assumption on µ_k(x) = E[Y_i|D_i = k, X_i = x].

Curse of dimensionality

- ▶ Issue: Poor performance if *K* is large due to many covariates.
- So many potential groups, too few observations for each group.
- With K variables, each of which takes L values, L^K possible groups (bins) in total.
- > This is known as **curse of dimensionality**.
- ▶ Relatedly, if X is a continuous random variable, can use kernel regression.

	Identification	Estimation
00	0000	000000000

Parametric Estimation, or going back to linear regression

If you put parametric assumption such as

$$E[Y_i | D_i = 0, X_i = x] = \beta' x_i$$

$$E[Y_i | D_i = 1, X_i = x] = \beta' x_i + \tau_0$$

then, you will have a model

$$y_i = \beta' x_i + \tau D_i + \epsilon_i$$

- You can think the matching estimator as controlling for omitted variable bias by adding (many) covariates (control variables) x_i.
- This is one reason why matching estimator may not be preferred in empirical research.
 - Remember: Controlling for those covariates is of course important. This can be combined with other empirical strategies (IV, DID, etc).

Introduction	Identification	Estimation
30	0000	000000000

Approach 2: *M*-Nearest Neighborhood Matching

- Idea: Find the counterpart in other group that is close to me.
- Define ŷ_i(0) and ŷ_i(1) be the estimator for (hypothetical) outcomes when treated and not treated.

$$\hat{y}_i(0) = \begin{cases} y_i & \text{if } D_i = 0\\ \frac{1}{M} \sum_{j \in L_M(i)} y_j & \text{if } D_i = 1 \end{cases}$$

L_M(i) is the set of M individuals in the opposite group who are "close" to individual i

Several ways to define the distance between X_i and X_j , such as

$$dist(X_i, X_j) = ||X_i - X_j||^2$$

▶ Need to choose (1) M and (2) the measure of distance

R has several packages for this.

Approach 3: Propensity Score Matching

- ► Use propensity score P(D_i = 1|X_i = x) as a distance to define who is the closest to me.
- Implementation:
 - 1. Estimate propensity score function by logit or probit using a flexible function of X_i .
 - 2. Calculate the propensity score for each observation. Use it to define the pair.