Goal: ATT at t=2 E[Yi2(1)−Yi2(0)|Gi=1]=E[Yi2(1)|Gi=1]−E[Yi2(0)|Gi=1]
What we observe
Pre-period (t=1) | Post (t=2) | |
---|---|---|
Treatment (Gi=1) | E[Yi1(0)|Gi=1] | E[Yi2(1)|Gi=1] |
Control (Gi=0) | E[Yi1(0)|Gi=0] | E[Yi2(0)|Gi=0] |
Under what assumptions can we the ATT?
Plug-in estimator
Regression estimators
Remember that the ATT is ATT=E[Yi2(1)−Yi1(0)|Gi=1]−E[Yi2(0)−Yi1(0)|Gi=0]
Replace them with the sample average. ^ATT={ˉy(t=2,G=1)−ˉy(t=1,G=1)}−{ˉy(t=2,G=0)−ˉy(t=1,G=0)} where ˉy(t,G) is the sample average for group G in period t .
Easy to make a 2×2 table!
Run the following regression yit=α0+α1Gi+α2Tt+α3Dit+βXit+ϵit
Gi: dummy for treatment group
Tt:dummy for treatment period
Dit=Gi×Tt. α3 captures the ATT.
Regression framework can incorporate covariates Xit, which is important to control for observed confounding factors.