	Parallel Trend	Research Strategy

Program Evaluation (Causal Inference) 2: Difference-in-differences

Instructor: Yuta Toyama

Last updated: 2020-06-22

Introduction			Parallel Trend	Research Strategy
0000	00000	000000	000000	00

Introduction

Introduction		Parallel Trend	Research Strategy
0000			

Introduction

- Difference-in-differences (DID)
 - Exploit the panel data structure to estimate the causal effect.
- Consider that
 - Treatment and control group comparison: selection bias
 - Before v.s. After comparison: time trend
- ▶ DID combines those two comparisons to draw causal conclusion.

00000 00000 00000 00000 00	
	i .

DID in Figure (on screen)

Introduction			Parallel Trend	Research Strategy
00000	00000	000000	000000	00

Plan of the Lecture

- Formal Framework
- Implementation in a regression framework
- Parallel Trend Assumption

Introduction	Framework	Estimation	Parallel Trend	Research Strategy
0000●	00000	000000	000000	00
Reference				

- Angrist and Pischke "Mostly Harmless Econometrics" Chapter 5
- Marianne Bertrand, Esther Duflo, Sendhil Mullainathan, How Much Should We Trust Differences-In-Differences Estimates?, *The Quarterly Journal of Economics*, Volume 119, Issue 1, February 2004, Pages 249–275, https://doi.org/10.1162/003355304772839588
 - Discuss issues of calculating standard errors in the DID method.
- Hiro Ishise, Shuhei Kitamura, Masa Kudamatsu, Tetsuya Matsubayashi, and Takeshi Murooka (2019) "Empirical Research Design for Public Policy School Students: How to Conduct Policy Evaluations with Difference-in-differences Estimation" February 2019
 - Slide: https://slides.com/kudamatsu/did-manual/fullscreen/#
 - Paper: https://docs.google.com/viewer?a=v&pid=sites&srcid= ZGVmYXVsdGRvbWFpbnxta3VkYW1hdHN1fGd4OjM4YzkwYmVjM2ZmMz

	Framework		Parallel Trend	Research Strategy
00000	00000	000000	000000	00

Framework

Framework	Parallel Trend	Research Strategy
00000		

Framework

- Consider two periods: t = 1, 2. Treatment implemented at t = 2.
- Y_{it}: observed outcome for person i in period t
- ► G_i: dummy for treatment group
- D_{it}: treatment status

 $D_{it} = 1 \text{ if } t = 2 \text{ and } G_i = 1$

- potential outcomes
 - Y_{it}(1): outcome for i when she is treated
 - $Y_{it}(0)$: outcome for *i* when she is not treated
- With this, we can write

$$Y_{it} = D_{it} Y_{it}(1) + (1 - D_{it}) Y_{it}(0)$$

Introduction	Framework	Estimation	Parallel Trend	Research Strategy
00000	00●00	000000	000000	00

Identification

• Goal: ATT at t = 2

 $E[Y_{i2}(1) - Y_{i2}(0)|G_i = 1] = E[Y_{i2}(1)|G_i = 1] - E[Y_{i2}(0)|G_i = 1]$

What we observe

Pre-period $(t = 1)$	Post $(t = 2)$
$E[Y_{i1}(0) G_i = 1] \\ E[Y_{i1}(0) G_i = 0]$	$ \begin{split} E[Y_{i2}(1) G_i = 1] \\ E[Y_{i2}(0) G_i = 0] \end{split} $

Under what assumptions can we the ATT?

- Simple comparison if $E[Y_{i2}(0)|G_i = 1] = E[Y_{i2}(0)|G_i = 0]$.
- Before-after comparison if $E[Y_{i2}(0)|G_i = 1] = E[Y_{i1}(0)|G_i = 1]$.
- Other (more reasonable) assumption?

Framework	Parallel Trend	Research Strategy
00000		

Parallel Trend Assumption

1

Assumption:

$$E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0] = E[Y_{i2}(0) - Y_{i1}(0)|G_i = 1]$$

• Change in the outcome *without treatment* is the same across two groups.

Then,

$$\underbrace{E[Y_{i2}(1) - Y_{i2}(0)|G_i = 1]}_{ATT} = E[Y_{i2}(1)|G_i = 1] - E[Y_{i2}(0)|G_i = 1]$$
$$= E[Y_{i2}(1)|G_i = 1] - E[Y_{i1}(0)|G_i = 1]$$
$$- \underbrace{(E[Y_{i2}(0)|G_i = 1] - E[Y_{i1}(0)|G_i = 1])}_{= E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0] \text{ (pararell trend)}}$$

	Framework		Parallel Trend	Research Strategy
00000	00000	000000	000000	00

Thus,

$$ATT = E[Y_{i2}(1) - Y_{i1}(0)|G_i = 1] - E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0]$$

which is why this is called "difference-in-differences".

		Estimation	Parallel Trend	Research Strategy
00000	00000	00000	000000	00

Estimation

00000 00000 00000 00	Strategy
	ľ

Estimation Approach

- 1. Plug-in estimator
- 2. Regression estimators

Introduction	Framework	Estimation	Parallel Trend	Research Strategy
00000	00000	00000	000000	00

Plug-in Estimator

Remember that the ATT is

 $ATT = E[Y_{i2}(1) - Y_{i1}(0)|G_i = 1] - E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0]$

Replace them with the sample average.

$$AT\hat{T} = \{\bar{y}(t = 2, G = 1) - \bar{y}(t = 1, G = 1)\} \\ - \{\bar{y}(t = 2, G = 0) - \bar{y}(t = 1, G = 0)\}$$

where $\bar{y}(t, G)$ is the sample average for group G in period t.

Easy to make a 2 × 2 table!

	Estimation	Parallel Trend	Research Strategy
	000000		

Example: Card and Kruger (1994)

	Stores by state			
Variable	PA (i)	NJ (ii)	Difference NJ – PA (iii)	
1. FTE employment before, all available observations	23.33	20.44	-2.89	
	(1.35)	(0.51)	(1.44)	
2. FTE employment after, all available observations	21.17	21.03	-0.14	
	(0.94)	(0.52)	(1.07)	
3. Change in mean FTE employment	-2.16	0.59	2.76	
	(1.25)	(0.54)	(1.36)	

Figure 1: image

	Estimation	Parallel Trend	Research Strategy
	000000		

Regression Estimators

Run the following regression

$$y_{it} = \alpha_0 + \alpha_1 G_i + \alpha_2 T_t + \alpha_3 D_{it} + \beta X_{it} + \epsilon_{it}$$

- ► *G_i*: dummy for treatment group
- *T_t* :dummy for treatment period
- $D_{it} = G_i \times T_t$. α_3 captures the ATT.
- Regression framework can incorporate covariates X_{it}, which is important to control for observed confounding factors.

	Estimation	Parallel Trend	Research Strategy
	000000		

Regression Estimators with FEs

With panel data

$$y_{it} = \alpha D_{it} + \beta X_{it} + \epsilon_i + \epsilon_t + \epsilon_{it}$$

where ϵ_i is individual FE and ϵ_t is time FE.

- Do not forget to use the cluster-robust standard errors!
 - See Bertrand, Duflo, and Mullainathan (2004, QJE) for the standard error issues.

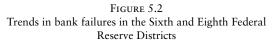
			Parallel Trend	Research Strategy
00000	00000	000000	00000	00

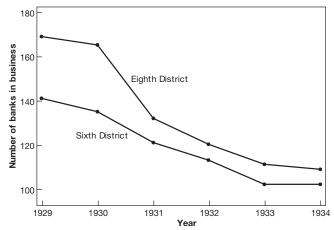
Parallel Trend

Introduction	Framework	Estimation	Parallel Trend	Research Strategy
00000	00000	000000	0●0000	00

Discussions on Parallel Trend

- Parallel trend assumption can be violated in various situations.
- Most critical issue: Treatment may depend on *time-varying factors* DID can only deal with **time-invariant factors**.
- Self-selection: participants in worker training programs experience a decrease in earnings before they enter the program
- Targeting: policies may be targeted at units that are currently performing best (or worst).


Introduction	Framework	Estimation	Parallel Trend	Research Strategy
00000	00000	000000	00●000	00


Diagnostics for Parallel Trends: Pre-treatment trends

- Check if the trends are parallel in the pre-treatment periods
- Requires data on multiple pre-treatment periods (the more the better)
- This is very popular. You MUST do this if you have multiple pre-treatment periods.
- Note: this is only diagnostics, NEVER a direct test of the assumption!
 You should never say "the key assumption for DID is satisfied if the pre-treatment trends are parallel.

IntroductionFrameworkEstimationParallel TrendResearch Strategy000000000000000000000000

Example (Fig 5.2 from Mastering Metrics)

Note: This figure shows the number of banks in operation in Mississippi in the Sixth and Fighth Federal Reserve Districts between 1929 and 1934.

	Parallel Trend	Research Strategy
	000000	

Unit-Specific Time Trends

Add group-specific time trends as

$$y_{it} = \alpha D_{it} + \beta_1 G_i \times t + \epsilon_i + \epsilon_t + \epsilon_{it}$$

To see whether including the time trend does not change estimates that much. (robustness check)

Note that

- These time trends are meant to capture the trend in each group.
- At least 3 periods of the data is needed.
- But, these are assumed to be linear. We are not sure whether the trend is linear or not! So this is just a robustness check.

	Parallel Trend	Research Strategy
	000000	

Other Diagnostics: Placebo test

Placebo test using other period as treatment period.

$$y_{it} = \sum_{\tau} \gamma_{\tau} G_i \times I_{t,\tau} + \mu_i + \nu_t + \epsilon_{it}$$

- The estimates of γ_τ should be close to zero up to the beggining of treatment (Fig 5.2.4 of Angrist and Pischke)
- Placebo test using different dependent variable which should not be affected by the policy.

			Parallel Trend	Research Strategy
00000	00000	000000	000000	•0

Research Strategy

			Parallel Trend	Research Strategy
00000	00000	000000	000000	00

Research Strategy using DID

Ishise et al (2019)

- $1. \ \mbox{How to find}$ a research question
- 2. What outcome dataset to look for
- 3. What policy to look for (except for example 1 and 2).