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Introduction

» Regression Discontinuity Design

» Exploit the discontinuous change in treatment status to estimate the
causal effect.

» Example:

» Threshold of test score for college admission
> Eligibility of policy due to age.
» Geographic boundary of two regions.

» Pros: Strong internal validity
» Assumption for identification is weak.

» Cons: Very little external validity
» What we estimate is the effect on people at the boundary.
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Reference

» Angrist and Pischke “Mostly harmless econometrics” Chapter 6

> R packages: https://sites.google.com/site/rdpackages/rdrobust
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Framework

» Y;: observed outcome for person i
» Define potential outcomes

> Yi;: outcome for i when she is treated (treatment group)
> Ypi: outcome for i when she is not treated (control group)

» D;: treatment status is deterministically determined (sharp RD design)
D; = 1{W; > W}

> Wi;: running variable (forcing variable).
> Probabilistic assignment is allowed (fuzzy RD design)
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Example: Incumbent Advantage

» Consider the two-candidate elections

» D;: dummy for incumbent in the election
» Y:: whether the candidate win in the election
» W, : the vote share in the previous election.

» The incumbent status is defined as

D; = 1{W; > 0.5}

» |dea of RD:

» Suppose that you won with 51%.
> You are similar to the guy who lose at 49% (main assumption of RD).
» If you focus on these people, D; is as if it were randomly assigned.
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Framework cont.d

» Note that D; = 1{W; > W} implies the unconfoundedness

(Y1i, Yoi) L Di|W;

» But the overlap assumption does not hold

1 ifw>W

P(D; =1|W; =w) = ; _
0 ifw<W

» To compare people with and without treatment, we need to rely on
some sort of extrapolation around the threshold.
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Linear approach

» Suppose for a moment that

Yii=p+ Yoi
E[YoilW; = w] = ag + Bow

» This leads to a regression
Yi=a+ W+ pDj+n;
» pis the causal effect.

» This approach relies on linear extrapolation. May not be good.
> What if E[Yp;|W; = w] is nonlinear?
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A. Linear E[Y, | X]
[

Outcome
5

Qutcome
5

11/49



Framework
[e]e]e]e]e]e] o]

A more general approach

» Allowing for nonlinear effect of the running variable W;

Yi = F(W) + pl{W; > W} + n;

» A function 7(-) might be a pth order polynomial.
F(W) = B1Wi+ Ba WP + -+ B WP

» nonparametric approach later.
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Implementation in Regression

» Consider B
E[YoilW; = w] = fo(W; — W)

E[Y1ilW; = w] = p + A(W; — W)

> W, = W; — W is a normalization.

» Then the regression equation is (See page 255 in Angrist and Pischke)

Yi=a+ forWi+ - + Bop WP
+PDi+[3fDiV~Vi+~-+5ZDiWP+m

» pis the causal effect.

» When running regression, need to focus on the sample around threshold.

» How close the sample should be to the threshold can be taken care by
statistical procedure.
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Mastering Metrics Sec 4.1: Effects of the minimum age drinking law
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Death rate from all causes (per 100,000)
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FIGURE 4.2
A sharp RD estimate of MLDA mortality effects
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Notes: This figure plots death rates from all causes against age in months.

The lines in the figure show fitted values from a regression of death rates on
an over-21 dummy and age in months (the vertical dashed line indicates the
minimum legal drinking age (MLDA) cutoff).

Alighs reserved,
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FIGURE 4.4
Quadratic control in an RD design
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Notes: This figure plots death rates from all causes against age in months.
Dashed lines in the figure show fitted values from a regression of death rates
on an over-21 dummy and age in months. The solid lines plot fitted values
from a regression of mortality on an over-21 dummy and a quadratic in
age, interacted with the over-21 dummy (the vertical dashed line indicates
the minimum legal drinking age [MLDA] cutoff).
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Death rate (per 100,000)

FiGURE 4.5

RD estimates of MLDA effects on mortality by cause of death
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Notes: This figure plots death rates from motor vehicle accidents and inter-

nal causes against age in months. Lines in the figure plot fitted values from
regressions of mortality by cause on an over-21 dummy and a quadratic func-
tion of age in months, interacted with the dummy (the vertical dashed line

indicates the minimum legal drinking age [MLDA] cutoff)
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Formal Identification Analysis

> Key: continuity assumptions: Both E[Y71;|W; = w] and E[Yp;|W; = w]
are continuous at the threshold w = W.
> This is not directly testable assumption (because we cannot observe Yi;
below the threshold).
» Will discuss several validating approaches.

» To see how this works, notice that
+1{w > W} (E[Yy|W; = w] — E[Yoi|W; = w])

» Taking the limit of w to W from above and below
lim E[Yi|W; = w] = lim E[Yoi|W; = w] = E[Yoi| W; = W]
wtW witW

lim E[Yi]|W; = w] = lim E[Yy;|W; = w] = E[Yy;|W; = W]
wlW wlW

» Notice that we use continuity in the second equalities!
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» Remember that
Iim_ E[Yi|W; = w] = lim E[Yoi|W; = w] = E[Yoi|W; = W]
wTW

wlW wl] W

» So, we have

E[Yi; — Yoi| W = W] = lim E[Y;|W; = w] — I|m E[Y;|W; = w]
wiW

P> LHS: Average treatment effect at the threshold
» RHS: We can observe from the data.
» Conditional expectation near the threshold.
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Validation of Assumptions

> The key assumptions : Both E[Y1;|W; = w] and E[Yo;|W; = w] are
continuous at the threshold w = W.

» This is not directly testable because we cannot observe Yj; below the
threshold.

» There are two common approaches that support this assumption:

1. Covariate test
2. Density test (no bunching in the running variable).
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Covariate Test

» The underlying idea of RDD: Comparing outcomes right above and right
below W provides a comparison of treated and control agents who are
similar due to the assumed continuity in conditional distributions

» If this is a valid comparison, then we would expect that covariates X
also change smoothly as we pass through the threshold.
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» Run the RDD on the covariate X.

» If we found the discontinuity, it suggests that the conditional
expectation of Y on W may not be continuous either.

> If X has a direct effect on Y, the discontinuity in E[Y;|W] at W will
confound the treatment effect.

» Example:
» Y hours worked,
» D: older-than-65 discounts,
> W: age, X: social security benefit (non-work income)
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Density Test, or No Bunching

» Manipulation if agents know about the institutional details

P If schools scoring lower than w = 50 on standardized tests get labeled as
dysfunctional, we might see many schools to be right above 50

» In this case, we observe bunching around the threshold.

> Agents are “manipulating” treatment assignment around the threshold.
» Density of W; is discontinuous at W

» We would expect that E[Y1;|W; = w] would be also discontinuous.

» McCrary (2008) suggests a test of the null hypothesis that the density of
Wi; is continuous at W.
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Bunching Estimation

» Bunching itself is an interesting economic phenomenon. It can be used
to analyze a different question.
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Example: Ito and Sallee (2018, REStat)
Panel A. Years 2001 to 2008 (Old Fuel-Economy Standard Schedule
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Panel A. Notch at 1520 kg
B = 285.27 (3.75), b = 3.75 (0.21), E[Aw] =114.97 (0.22)
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Empirical Paper: Health Demand

» “The Effect of Patient Cost Sharing on Utilization, Health, and Risk
Protection” by Hitoshi Shigeoka 2014 AER’
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Policy Issue: Medical Expenditure

» Medical expenditures are rising.

» due to an aging population and coverage expansion
> acute fiscal challenge to governments!

» Current expenditure on health (to GDP) in 2018 according to OECD
Health Statistics 2019

> U.S.A. (16.9%), Switzerland (12.2%), Germany (11.2%), France (11.2%),
Sweden (11.0%), Japan (10.9%)...

» One main strategy is higher patient cost sharing, that is, requiring
patients to pay a larger share of the cost of care.

» Question: how does patient cost sharing affect

> utilization (demand elasticity)?
» health?
> risk protection (out-of-pocket expenditures)?
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Background and Cross-sectional Data

» All Japanese citizens are mandatorily covered by health insurance.
» Use a sharp reduction in cost sharing for patients aged over 70 in Japan.

» The sources are the Patient Survey and the Comprehensive Survey of
Living Conditions (CSLC). 1984-2008.

» Advantages
» There are no confounding factors at age 70. We can isolate the effect of
patient cost sharing.
» Medical providers do not have incentive to differentiate prices by the
patients’ insurance type.
» \We can separate inpatient and outpatient.
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Cost Sharing and Out-of-Pocket Medical Expenditure

» In sum, the proportion is 30% for <69 and 10% for 70<.

» Qut-of-pocket medical expenditure for impatient admissions can reach
27% for a 69-year-old.

» However, for 70, it would be reduced to 8.6%.

» We need to take the stop-loss into account.
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ESTIMATED OUT-OF-POCKET MEDICAL EXPENDITURE PER MONTH

Out-of-pocket medical expenditure

(thousand yen)
Below Above Percent
70 70 reduction
Type of service (1) (2) ((1)—(2))/(3)
Outpatient visits
4.0 1.1 73
Inpatient admissions
41.7 13.0 69

Figure 9: image
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Identification Strategy
» Standard RD designs.

» Basic estimation equation for the CSLC is
Yiat = f(a) + BPost70;ar + X1y + €jat-

P Y, a measure of morbidity or out-of-pocket medical expenditure
> f(a): a smooth function of age.

» X.,:: a set of individual covariates

» Post70;,:: = 0 if individual i is over 70.

> Patient Survey/mortality data represents individuals who are present in
the medical institutions/deceased.

» As in Card, Dobkin, and Maestas (2004), basic estimation equation for
the Patient Survey and mortality data is

log(Yat) = f(a) + BPost70,¢ + fiat.
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Results: Outpatient Visits

» 10.3% increase in overall visits. The implied elasticity is —0.18.
» Sharp drop in the duration from the last visit by one day.

» The effect is heterogeneous across institutions, genders, and diagnoses.
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Panel A. Overall outpatient visits (log scale)
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Panel B. Days from last outpatient visit for repeat patients
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Results: Inpatient Admissions

> Left: 8.2% increase in overall admissions. The implied elasticity is
—0.16.

» Right: Surge (increase by 12.0%) in admissions with surgery.

» From robustness checks, the implied elasticity is around —0.2.
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Panel A. Overall
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Benefits: Health Outcomes

» We cannot find significant discontinuity in mortality.
> This result is expected because health is stock (Grossman 1972).
» There is no discontinuity in morbidity (self-reported health).

» The available health measures here are limited, so we would
underestimate the benefit.
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FIGURE 6. AGE PROFILE OF OVERALL MORTALITY
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Benefits: Risk Reduction

» Another benefit is a lower risk of unexpected out-of-pocket medical
spending.

» We use a nonparametric estimator for quantile treatment effects.

> Patients at the right tail of the distribution in particular are substantially
benefited.
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Panel A. At the seventy-fifth, ninetieth, and ninety-fifth percentile
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Panel B. RD estimates and each quantile
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Discussion

» Price Elasticities
» We cannot distinguish own- from cross-price effects.
» However, for some diagnosis groups, cross-price effects should be nearly
zero.
» The overall effect of the price change for the groups is an approximately
10 percent increase in visits.

» Cost-Benefit Analysis
» Imposing many assumptions, we speculate that the welfare gain of risk
protection from lower patient cost sharing is comparable to the total social
cost.
» We cannot include welfare gains from health improvements.
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