Randomized Control Trial 1: Framework Trial

Instructor: Yuta TOYAMA (遠山 祐太)

Last updated: 2021-05-20

Introduction

Introduction

- Program Evaluation, or Causal Inference
 - Estimation of "treatment effect" of some intervention (typically binary)
 - Hereafter, I use "treatment effect" and "causal effect" interchangeably (acknowledging abuse of language).
- Example:
 - $\circ~$ effects of job training on wage
 - effects of advertisement on purchase behavior
 - effects of distributing mosquito net on children's school attendance
- Difficulty: treatment is **endogenous decision**
 - $\circ~$ selection bias, omitted variable bias.
 - especially in **observational data** (in comparison with experimental data)

Overview

- Introduce Rubin's causal model
 - also known as potential outcome framework) (潜在アウトカムモデル)
- Introduce randomized controlled trial (ランダム化比較試験)
 - Framework
 - Inference: Estimation and hypothesis testing
 - (next week) Application: Field Experiment on Energy Demand in Japan (Ito et al 2018)

Reference

- Angrist and Pischke "Mostly Harmless Econometrics"
- Cunningham

Rubin's Potential Outcome Framework

Framework

- Y_i : **observed outcome** for person i
- *D_i*: binary **treatment (処置)** status

$$D_i = \begin{cases} 1 & treated (treatment group, 処置群) \\ 0 & not treated (control group, 対照群) \end{cases}$$

- Define **potential outcomes**
 - $\circ Y_{1i}$: outcome for i if she is treated
 - $\circ Y_{0i}$: outcome for i if she is not treated
- With this, we can write

$$egin{array}{lll} Y_i &= D_i Y_{1i} + (1-D_i) Y_{0i} \ &= & iggl\{ egin{array}{lll} Y_{1i} & if \ D_i = 1 \ Y_{0i} & if \ D_i = 0 \end{array} iggr. \end{array}$$

Key Point 1 (/2) Counterfactual outcome is never observed.

- We can observe (Y_i, D_i) for each person i
- However, can never observe Y_{0i} and Y_{1i} simultaneously.
- Once person *i* took a particular treatment, observed outcome is potential outcome for that treatment.
- Known as **fundamental problem of program evaluation**

Example: College Choice

- Let D_i be whether go to college.
- Y_{1i} : potential income if i goes to college, Y_{0i} potential income if not
- Y_i : actual observed outcome

	Y_{1i}	Y_{0i}	D_i	Y_i
Adam	80000 USD	50000 USD	1	80000 USD
Bob	60000 USD	60000 USD	0	60000 USD
Cindy	90000 USD	60000 USD	1	90000 USD
Debora	80000 USD	70000 USD	0	70000 USD

Key Point 2 (/2): No spillover of treatment effect

- Stable Unit Treatment Value Assumption (SUTVA): Treatment effect for a person does not depend on the treatment status of other people.
- It rules out externality (外部性) and general equilibrium effects (一般均衡効果).
- Ex: If **everyone** takes a job training, equilibrium wage would change, which affects the individual outcome.
- Question: Any example of treatment effect that violates the SUTVA?

Parameters of Interest

- Individual treatment effect $Y_{1i} Y_{0i}$
 - Key: allowing for heterogenous effects across people
 - Individual treatment effect cannot be obtained due to the fundamental problem.
- Instead, we focus on the average effects
- Average treatment effect (平均処置効果): $ATE = E[Y_{1i} Y_{0i}]$
- Average treatment effect on treated: $ATT = E[Y_{1i} Y_{0i} | D_i = 1]$
- Average treatment effect on untreated: $ATT = E[Y_{1i} Y_{0i}|D_i = 0]$
- Average treatment effect conditional on covariate (共変量): $ATE(x) = E[Y_{1i} Y_{0i} | D_i = 1, X_i = x]$

Relation to Regression Analysis

- Assume that
 - 1. linear (parametric) structure in Y_{0i} , and
 - 2. constant (homogenous) treatment effect,

$$Y_{0i}=eta_0+\epsilon_i$$

 $Y_{1i}-Y_{0i}=eta_1$

• You will have

$$Y_i = eta_0 + eta_1 D_i + \epsilon_i$$

- Program evaluation framework is nonparametric in nature.
 - Though, in practice, estimation of treatment effect relies on a parametric specification.

Selection Bias (セレクションバイアス)

- To estimate treatment effect, the simplest way is to compare average outcomes between treatment and control group
- Does this tell you average treatment effect? No in general!
- To see this, first, for $d=\{0,1\}$,

$$E[Y_i|D_i=d]=E[Y_{di}|D_i=d]$$

- $\circ\;$ LHS: Average of observed outcome for group $d\;$
- $\circ\;$ RHS: Average of **potential outcome** for group d

• Then,

$$\underbrace{E[Y_i|D_i = 1] - E[Y_i|D_i = 0]}_{simple \ comparison} = E[Y_{1i}|D_i = 1] - E[Y_{0i}|D_i = 0]$$

$$= \underbrace{E[Y_{1i} - Y_{0i}|D_i = 1]}_{ATT} + \underbrace{E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]}_{selection \ bias}$$

Simple difference = ATT + Bias

$$\underbrace{E[Y_i|D_i=1] - E[Y_i|D_i=0]}_{simple \ comparison} = \underbrace{E[Y_{1i} - Y_{0i}|D_i=1]}_{ATT} + \underbrace{E[Y_{0i}|D_i=1] - E[Y_{0i}|D_i=0]}_{selection \ bias}$$

- The bias is not zero in general:
 - Those who go to a college **would earn a lot even without a college degree**
- We cannot observe $E[Y_{0i}|D_i=1]$:
 - the outcome of people in treatment group if they **WERE NOT treated (counterfactual)**.

Solutions

- Randomized Control Trial
 - \circ Assign treatment D_i randomly
- Matching (regression):
 - $\circ~$ Using observed characteristics of individuals to control for selection bias
- Instrumental variable
 - $\circ~$ Use the variable that affects treatment status but is not correlated to the outcome
- Panel data (difference-in-differences)
- Regression discontinuity

Randomized Control Trial: Overview

What is Ranomized controlled trial (RCT, ランダム化比 較試験)?

- Measure treatment effect by
 - 1. randomly assigning treatment to subjects (people)
 - 2. measure outcomes of subjects in both treatment and control group.
 - 3. the difference of outcomes between these two groups is treatment effect.
- Since treatment is randomly assigned, no worry for selection bias (see later).
- It began in a clinical trial (治験), but now is widely used in social science.

RCTs in Social Science and Business

- Development economics: Esther Duflo "Social experiments to fight poverty"
- Health economics: Amy Finkelstein "Randomized evaluations & the power of evidence | Amy Finkelstein"
- Buisiness: Ron Kohavi et al "Trustworthy Online Controlled Experiments" (和訳「A/Bテスト 実践ガイド」
- Andrew Lee "Randomistas" (和訳:「RCT大全」)

Framework

• Key assumption: Treatment D_i is independent with potential outcomes (Y_{0i}, Y_{1i})

 $D_i \perp (Y_{0i},Y_{1i})$

• Under this assumption,

$$E[Y_{1i}|D_i=1]=E[Y_{1i}|D_i=0]=E[Y_{1i}]\ E[Y_{0i}|D_i=1]=E[Y_{0i}|D_i=0]=E[Y_{0i}]$$

• The sample selection does not exist! Thus,

$$\underbrace{E[Y_i|D_i=1] - E[Y_i|D_i=0]}_{simple \ comparison} = \underbrace{E[Y_{1i} - Y_{0i}|D_i=1]}_{ATT}$$

• ATT can be estimated (identified) by a simple comparison of outcomes between treatment and control groups.

(A bit technical) What is identification (識別)?

- Roughly speaking, a parameter of the model is **identified** if that parameter can be written by **observable objects**.
- In the previous slide, the parameter of interest is ATT $E[Y_{1i} Y_{0i}|D_i = 1]$.
- This is written as $E[Y_i|D_i = 1] E[Y_i|D_i = 0]$, the difference of the conditional expectations of observed outcome Y_i for each group.
- Conditional expectation $E[Y_i|D_i = d]$ is an observable object if you have the knowledge on the joint distribution of (Y_i, D_i) .

Limitations of RCTs

- Some people say "RCT is a gold standard for causal inference".
- There are limitations that we should acknowledge.
- 1. SUTVA assumption
 - $\circ~$ not specific to RCT though).
- 2. Ethical criticism
 - $\circ~$ Is this fair for everyone?
- 3. Cannot do RCTs in many settings.
 - $\circ~$ Topics that are not suitable to randomized experiment.
 - It requires a lot of money and effort.
- 4. External Validity (外的妥当性)

Internal and External Validity

- Internal validity (内的妥当性)
 - Can the analysis establish a credible result about causal effect?
 - RCT is strong in this aspect.
- External validity (外的妥当性):
 - Can you extrapolate your results from an experiment to a general population?
 - A population in an experiment may differ from the population of interest.

Inference 1: Estimation

Overview of Inference

- So far, we show identification of treatment effect parameter.
- In practice, we have a sample of people (data) and use it to infer the unknown parameter.
- I explain statistical inference in the context of RCT.
 - (Point) Estimation (点推定)
 - Hypothesis testing (仮説検定)

Estimation of ATT parameter

• Remember that ATT is written as

$$E[Y_{1i} - Y_{0i}|D_i = 1] = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

• Estimate the conditional expectation by the **conditional sample mean**

$$\hat{E}[Y_i|D_i=1] = \frac{1}{N_1} \sum_{i=1}^N Y_i \cdot \mathbf{1}\{D_i=1\} = \frac{\frac{1}{N} \sum_{i=1}^N Y_i \cdot \mathbf{1}\{D_i=1\}}{\frac{1}{N} \sum_{i=1}^N \mathbf{1}\{D_i=1\}}$$

• Difference of the sample average is an estimator for the ATT

$$A\hat{T}T = \frac{\frac{1}{N}\sum_{i=1}^{N}Y_i \cdot \mathbf{1}\{D_i = 1\}}{\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}\{D_i = 1\}} - \frac{\frac{1}{N}\sum_{i=1}^{N}Y_i \cdot \mathbf{1}\{D_i = 0\}}{\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}\{D_i = 0\}}$$

• Question: Is this a good way to estimate ATT good? See this next.

Alternative: Linear Regression

• You can run a linear regression of Y on D along with other covariates X_i

$$Y_i = \beta_0 + \beta_1 D_i + \beta' X_i + \epsilon_i$$

Properties of Estimators

Consider the estimator $\hat{\mu}_N$ for the unknown parameter μ .

1. Unbiasdeness (不偏性): The expectation of the estimator is the same as the true parameter in the population.

$$E[\hat{\mu}_N]=\mu$$

- 2. Consistency (一致性): The estimator converges to the true parameter in probability. \$\$ \forall \epsilon >0, \lim{N \rightarrow \infty} \ Prob(|\hat{\mu}{N}-\mu|<\epsilon)=1 \$\$
 - Intuition: As the sample size gets larger, the estimator and the true parameter is close with probability one.
 - Note: a bit different from the usual convergence of the sequence.

The estimator above is consistent

• Law of large numbers (大数の法則) Sample mean converges to population mean in probability.

$$rac{1}{N}\sum_{i=1}^N X_i \stackrel{p}{\longrightarrow} E[X]$$

• Can be applied to the above (using continuous mapping theorem)

$$\frac{\frac{1}{N}\sum_{i=1}^{N}Y_i \cdot \mathbf{1}\{D_i=1\}}{\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}\{D_i=1\}} \xrightarrow{p} \frac{E[Y_iD_i]}{E[D_i]} = E[Y_i|D_i=1]$$

• Exercise: Show the last equality (Hint: law of iterated expectation).

Inference 2: Hypothesis Testing

Hypothesis Testing

- Testing (検定): use the sample to decide whether the hypothesis (仮説) about the population parameter is true
- Example 1: Is the average age 45 in population?
- Example 2: Are test scores of male and female students are different in population?
- Issue: Sample statistic is random! How to distinguish between
 - $\circ\;$ just random phenomenon, or
 - true effects (difference) in the population

Example in Population Mean

- 1. Calculate sample mean $ar{Y}$
- 2. Define **null hypothesis (帰無仮説)** and **alternative hypothesis (対立仮説)**: For a chosen value of μ .
 - \circ Null: $H_0: E[Y] = \mu$
 - $\circ\;$ Alternative: $H_1: E[Y]
 eq \mu$
- 3. If the null hypothesis H_0 is true, then $ar{Y}$ should be close to μ
- 4. If \overline{Y} is "vary far" from μ , then we should **reject (棄却)** H_0 .
- Question: How to determine whether it is "very far"?

Preliminary: Standard Errors

- Let $V(ar{Y})$ denote (population) variance of the sample mean.
- If Y_i is independently and identifally distributed (i.i.d.)

$$V(ar{Y}) = rac{1}{N^2}\sum_{i=1}^N V(Y_i) = rac{V(Y)}{N}$$

• Standard errors (標準誤差): standard deviation of the sample mean

$$SE(ar{Y})=\sqrt{V(Y)/N}$$

• We usually use **estimated** standard errors by replacing V(Y) with sample variance S(Y)

$$\hat{SE}(ar{Y}) = \sqrt{\hat{V}(Y)/N}$$

where $\hat{V}(Y) = rac{1}{N-1}\sum_{i=1}^N (Y_i - ar{Y})^2$

t-statistics

- Consider the null hypothesis $H_0: E[Y] = \mu$.
- Define t-statistics (t 統計量)

$$t(\mu) = rac{ar{Y} - \mu}{\hat{SE}(ar{Y})}$$

- When the null hypothesis is true, $t(\mu)$ follows some distribution.
- If the realized value of $t(\mu)$ is unlikely under the distribution, we reject the hypothesis.
- Question: What is the distribution?

Central Limit Theorem (CLT, 中心極限定理)

• Consider the i.i.d. sample of Y_1, \dots, Y_N drawn from the random variable Y with mean μ and variance σ^2 . The following Z converges in distribution to the normal distribution.

$$Z = rac{1}{\sqrt{N}} \sum_{i=1}^N rac{Y_i - \mu}{\sigma} \stackrel{d}{ o} N(0,1)$$

• In this context

$$t(\mu) = rac{ar{Y} - \mu}{\hat{SE}(ar{Y})} = rac{1}{N} \sum_{i=1}^{N} rac{Y_i - \mu}{\sqrt{\hat{V}(Y)/N}} = rac{1}{\sqrt{N}} \sum_{i=1}^{N} rac{Y_i - \mu}{\sqrt{\hat{V}(Y)}} \stackrel{approx}{\sim} N(0, 1)$$

Simulation of CLT using R

- Consider the random variable Y_i that follows *binomial distribution (*二項分布) with probability 0.4.
- Here, E[Y]=0.4 and V[Y]=0.4 imes(1-0.4).
- Define

$$Z = rac{1}{\sqrt{N}} \sum_{i=1}^N rac{Y_i - E(Y)}{\sqrt{(V(Y))}}$$

• We demonstrate that as N gets larger, the distrubution of Z gets closer to the standard normal distribution.

Define a function

}

• This function draws samplesize observations from binomial distribution, calculate Z for each sample, and repeat this Nreps times.

```
f_simu_CLT <- function(Nreps, samplesize, distp ){
  output = numeric(Nreps)
  for (i in 1:Nreps ){
    test <- rbinom(n = samplesize, size = 1, prob = distp)
    EY <- distp
    VY <- (1 - distp)*distp
    output[i] <- ( mean(test) - EY ) / sqrt( VY / samplesize )
  }
  return(output)</pre>
```

```
# Set the seed for the random number
set.seed(12345)
```

```
# Run simulation
Nreps = 500
result_CLT1 <- f_simu_CLT(Nreps, samplesize = 10 , distp = 0.4 )
result_CLT2 <- f_simu_CLT(Nreps, samplesize = 1000, distp = 0.4 )</pre>
```

```
# Random draw from standard normal distribution as comparison
result_stdnorm = rnorm(Nreps)
```

• Now take a look at the distribution.

```
# load tidyverse
library("tidyverse")
```

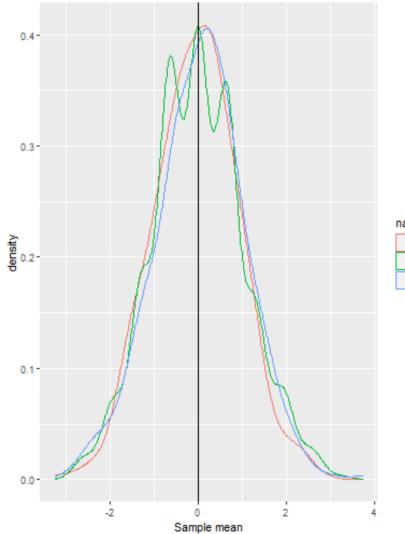
Warning: package 'tidyverse' was built under R version 4.0.3

Warning: package 'ggplot2' was built under R version 4.0.3

Warning: package 'dplyr' was built under R version 4.0.4

```
# Use "melt" to change the format of result_data
data_for_plot <- tidyr::pivot_longer(data = result_CLT_data, cols = everything())
# Use "ggplot2" to create the figure.
fig <-
ggplot(data = data_for_plot) +
xlab("Sample mean") +
geom_density(aes(x = value, colour = name ), ) +
geom_vline(xintercept=0, colour="black")
```

plot(fig)



name

StandardNormal

Ybar_standardized_10 Ybar_standardized_1000

Hypothesis Testing based on CLT

- Standard normal dist has mean 0 and standard deviation 1.
- Under this distribution, values larger than ± 2 appeared only about 5%!!!
- We say if $t(\mu)$ is larger than 2 in absolute value, we judge the hypothesis is unlikley to be true at 5%.
- We often say the sample mean is "significantly" different from 0.

Testing the difference of sample average between two groups

- Suppose that you want to test whether treatment effect is zero or not.
- The null hypothesis \$\$ H0 : $E[Y{i} | D{i}=1]-E[Y{i} | D_{i}=0] = 0$ \$\$
- t-statistics in this case is

$$t = rac{ar{Y_1} - ar{Y_0}}{\hat{SE}(ar{Y_1} - ar{Y_0})}$$

• Here, $ar{Y_d}$ is conditional sample mean of each group d.

• The standard error is

$$SE(ar{Y_1} - ar{Y_0}) = \sqrt{rac{V^1(Y)}{N_1} + rac{V^0(Y)}{N_0}}$$

where $V^{d}(Y)$ is the population variance of observations in group d.