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Introduction
Program Evaluation, or Causal Inference

Estimation of "treatment effect" of some intervention (typically binary)
Hereafter, I use "treatment effect" and "causal effect" interchangeably (acknowledging
abuse of language).

Example:
effects of job training on wage
effects of advertisement on purchase behavior
effects of distributing mosquito net on children's school attendance

Difficulty: treatment is endogenous decision
selection bias, omitted variable bias.
especially in observational data (in comparison with experimental data)
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Overview
Introduce Rubin's causal model

also known as potential outcome framework) (潜在アウトカムモデル)

Introduce randomized controlled trial (ランダム化⽐較試験)
Framework
Inference: Estimation and hypothesis testing
(next week) Application: Field Experiment on Energy Demand in Japan (Ito et al 2018)
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Reference
Angrist and Pischke "Mostly Harmless Econometrics"
Cunningham
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Rubin's Potential Outcome Framework
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Framework
: observed outcome for person 
: binary treatment (処置) status

Define potential outcomes
: outcome for  if she is treated
: outcome for  if she is not treated 

With this, we can write

Yi i
Di

Di = {
1 treated (treatment group,処置群)

0 not treated (control group,対照群)

Y1i i
Y0i i

Yi = DiY1i + (1 − Di)Y0i

=  {Y1i if Di = 1

Y0i if Di = 0
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Key Point 1 (/2) Counterfactual outcome is never
observed.

We can observe  for each person 

However, can never observe  and  simultaneously.

Once person  took a particular treatment, observed outcome is potential outcome for that
treatment.

Known as fundamental problem of program evaluation

(Yi,Di) i

Y0i Y1i

i
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Example: College Choice
Let  be whether go to college.

: potential income if  goes to college,  potential income if not
: actual observed outcome

Adam 80000 USD 50000 USD 1 80000 USD

Bob 60000 USD 60000 USD 0 60000 USD

Cindy 90000 USD 60000 USD 1 90000 USD

Debora 80000 USD 70000 USD 0 70000 USD

Di

Y1i i Y0i

Yi

Y1i Y0i Di Yi
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Key Point 2 (/2): No spillover of treatment effect
Stable Unit Treatment Value Assumption (SUTVA): Treatment effect for a person does
not depend on the treatment status of other people.

It rules out externality (外部性) and general equilibrium effects (⼀般均衡効果).

Ex: If everyone takes a job training, equilibrium wage would change, which affects the
individual outcome.

Question: Any example of treatment effect that violates the SUTVA?
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Parameters of Interest
Individual treatment effect 

Key: allowing for heterogenous effects across people
Individual treatment effect cannot be obtained due to the fundamental problem.

Instead, we focus on the average effects

Average treatment effect (平均処置効果): 

Average treatment effect on treated: 

Average treatment effect on untreated:  

Average treatment effect conditional on covariate (共変量): 

Y1i − Y0i

ATE = E[Y1i − Y0i]

ATT = E[Y1i − Y0i|Di = 1]

ATT = E[Y1i − Y0i|Di = 0]

ATE(x) = E[Y1i − Y0i|Di = 1,Xi = x]
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Relation to Regression Analysis
Assume that

1. linear (parametric) structure in , and
2. constant (homogenous) treatment effect,

You will have

Program evaluation framework is nonparametric in nature.
Though, in practice, estimation of treatment effect relies on a parametric specification.

Y0i

Y0i = β0 + ϵi

Y1i − Y0i = β1

Yi = β0 + β1Di + ϵi
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Selection Bias (セレクションバイアス)

To estimate treatment effect, the simplest way is to compare average outcomes between
treatment and control group  

Does this tell you average treatment effect? No in general!

To see this, first, for ,

LHS: Average of observed outcome for group 
RHS: Average of potential outcome for group 

d = {0, 1}

E[Yi|Di = d] = E[Ydi|Di = d]

d
d
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Then,

E[Yi|Di = 1] − E[Yi|Di = 0]


simple comparison

= E[Y1i|Di = 1] − E[Y0i|Di = 0]

= E[Y1i − Y0i|Di = 1]


ATT

+ E[Y0i|Di = 1] − E[Y0i|Di = 0]


selection bias
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Simple difference = ATT + Bias

The bias is not zero in general:
Those who go to a college would earn a lot even without a college degree

We cannot observe :
the outcome of people in treatment group if they WERE NOT treated (counterfactual).

E[Yi|Di = 1] − E[Yi|Di = 0]


simple comparison

=E[Y1i − Y0i|Di = 1]


ATT

+ E[Y0i|Di = 1] − E[Y0i|Di = 0]


selection bias

E[Y0i|Di = 1]
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Solutions
Randomized Control Trial

Assign treatment  randomly

Matching (regression):
Using observed characteristics of individuals to control for selection bias

Instrumental variable
Use the variable that affects treatment status but is not correlated to the outcome

Panel data (difference-in-differences)

Regression discontinuity

Di
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Randomized Control Trial: Overview
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What is Ranomized controlled trial (RCT, ランダム化⽐
較試験) ?

Measure treatment effect by
1. randomly assigning treatment to subjects (people)
2. measure outcomes of subjects in both treatment and control group.
3. the difference of outcomes between these two groups is treatment effect.

Since treatment is randomly assigined, no worry for selection bias (see later).

It began in a clinical trial (治験), but now is widely used in social science.
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RCTs in Social Science and Business
Development economics: Esther Duflo "Social experiments to fight poverty"

Health economics: Amy Finkelstein "Randomized evaluations & the power of evidence | Amy
Finkelstein"

Buisiness: Ron Kohavi et al "Trustworthy Online Controlled Experiments" (和訳「A/Bテスト
実践ガイド」

Andrew Lee "Randomistas" (和訳︓「RCT⼤全」)
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https://www.youtube.com/watch?v=N8rD844McrA
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https://www.amazon.co.jp/dp/0300236123
https://www.amazon.co.jp/dp/4622089335


Framework
Key assumption: Treatment  is independent with potential outcomes 

Under this assumption,

Di (Y0i,Y1i)

Di ⊥ (Y0i,Y1i)

E[Y1i|Di = 1] = E[Y1i|Di = 0] = E[Y1i]

E[Y0i|Di = 1] = E[Y0i|Di = 0] = E[Y0i]
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The sample selection does not exist! Thus,

ATT can be estimated (identified) by a simple comparison of outcomes between treatment
and control groups.

E[Yi|Di = 1] − E[Yi|Di = 0]


simple comparison

=E[Y1i − Y0i|Di = 1]


ATT
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(A bit technical) What is identification (識別)?

Roughly speaking, a parameter of the model is identified if that parameter can be written
by observable objects.

In the previous slide, the parameter of interest is ATT .

This is written as , the difference of the conditional
expectations of observed outcome  for each group.

Conditional expectation  is an observable object if you have the knowledge on
the joint distribution of .

E[Y1i − Y0i|Di = 1]

E[Yi|Di = 1] − E[Yi|Di = 0]
Yi

E[Yi|Di = d]
(Yi,Di)
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Limitations of RCTs
Some people say "RCT is a gold standard for causal inference".
There are limitations that we should acknowledge.

1. SUTVA assumption
not specific to RCT though).

2. Ethical criticism
Is this fair for everyone?

3. Cannot do RCTs in many settings.
Topics that are not suitable to randomized experiment.
It requires a lot of money and effort.

4. External Validity (外的妥当性)
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Internal and External Validity
Internal validity (内的妥当性)

Can the analysis establish a credible result about causal effect?
RCT is strong in this aspect.

External validity (外的妥当性):
Can you extrapolate your results from an experiment to a general population?
A population in an experiment may differ from the population of interest.
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Inference 1: Estimation
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Overview of Inference
So far, we show identification of treatment effect parameter.

In practice, we have a sample of people (data) and use it to infer the unknown parameter.

I explain statistical inference in the context of RCT.

(Point) Estimation (点推定)
Hypothesis testing (仮説検定)
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Estimation of ATT parameter
Remember that ATT is written as

Estimate the conditional expectation by the conditional sample mean

E[Y1i − Y0i|Di = 1] = E[Yi|Di = 1] − E[Yi|Di = 0]

Ê[Yi|Di = 1] =
N

∑
i=1

Yi ⋅ 1{Di = 1} =
1

N1

∑N

i=1 Yi ⋅ 1{Di = 1}1
N

∑N

i=1 1{Di = 1}1
N
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Difference of the sample average is an estimator for the ATT

Question: Is this a good way to estimate  good? See this next.

^ATT = −
∑N

i=1 Yi ⋅ 1{Di = 1}1
N

∑N

i=1 1{Di = 1}1
N

∑N

i=1 Yi ⋅ 1{Di = 0}1
N

∑N

i=1 1{Di = 0}1
N

ATT
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Alternative: Linear Regression

You can run a linear regression of  on  along with other covariates Y D Xi

Yi = β0 + β1Di + β ′Xi + ϵi
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Properties of Estimators
Consider the estimator  for the unknown parameter .

1. Unbiasdeness (不偏性): The expectation of the estimator is the same as the true parameter
in the population.

2. Consistency (⼀致性): The estimator converges to the true parameter in probability. $$
\forall \epsilon >0, \lim{N \rightarrow \infty} \ Prob(|\hat{\mu}{N}-\mu|<\epsilon)=1 $$

Intuition: As the sample size gets larger, the estimator and the true parameter is close
with probability one.
Note: a bit different from the usual convergence of the sequence.

μ̂N μ

E[μ̂N ] = μ
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The estimator above is consistent
Law of large numbers (⼤数の法則) Sample mean converges to population mean in
probability.

Can be applied to the above (using continuous mapping theorem)

Exercise: Show the last equality (Hint: law of iterated expectation).

N

∑
i=1

Xi

p
⟶ E[X]

1

N

p

⟶ = E[Yi|Di = 1]
∑N

i=1 Yi ⋅ 1{Di = 1}1
N

∑N

i=1 1{Di = 1}1
N

E[YiDi]

E[Di]
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Inference 2: Hypothesis Testing
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Hypothesis Testing
Testing (検定): use the sample to decide whether the hypothesis (仮説) about the population
parameter is true

Example 1: Is the average age 45 in population?

Example 2: Are test scores of male and female students are different in population?

Issue: Sample statistic is random! How to distinguish between
just random phenomenon, or
true effects (difference) in the population
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Example in Population Mean
1. Calculate sample mean 

2. Define null hypothesis (帰無仮説) and alternative hypothesis (対⽴仮説): For a chosen
value of .

Null: 
Alternative: 

3. If the null hypothesis  is true, then  should be close to 

4. If  is “vary far” from , then we should reject (棄却) .

Question: How to determine whether it is "very far"?

Ȳ

μ

H0 : E[Y ] = μ

H1 : E[Y ] ≠ μ

H0 Ȳ μ

Ȳ μ H0
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Preliminary: Standard Errors
Let  denote (population) variance of the sample mean.
If  is independently and identifally distributed (i.i.d.)

Standard errors (標準誤差): standard deviation of the sample mean

V (Ȳ )
Yi

V (Ȳ ) =
N

∑
i=1

V (Yi) =
1

N 2

V (Y )

N

SE(Ȳ ) =√V (Y )/N
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We usually use estimated standard errors by replacing  with sample variance 

where 

V (Y ) S(Y )

ŜE(Ȳ ) =√V̂ (Y )/N

V̂ (Y ) = ∑N
i=1(Yi − Ȳ )21

N−1
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t-statistics
Consider the null hypothesis .
Define t-statistics (t 統計量)

When the null hypothesis is true,  follows some distribution.
If the realized value of  is unlikely under the distribution, we reject the hypothesis.
Question: What is the distribution?

H0 : E[Y ] = μ

t(μ) =
Ȳ − μ

ŜE(Ȳ )

t(μ)
t(μ)
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Central Limit Theorem (CLT, 中⼼極限定理)

Consider the i.i.d. sample of  drawn from the random variable  with mean 
and variance . The following  converges in distribution to the normal distribution.

In this context

Y1, ⋯ ,YN Y μ

σ2 Z

Z =
N

∑
i=1

d
→ N(0, 1)

1

√N

Yi − μ

σ

t(μ) = =
N

∑
i=1

=
N

∑
i=1

approx
∼ N(0, 1)

Ȳ − μ

ŜE(Ȳ )

1

N

Yi − μ

√V̂ (Y )/N

1

√N

Yi − μ

√V̂ (Y )
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Simulation of CLT using R
Consider the random variable  that follows binomial distribution (⼆項分布) with probability
0.4.

Here,  and .

Define

We demonstrate that as  gets larger, the distrubution of  gets closer to the standard
normal distribution.

Yi

E[Y ] = 0.4 V [Y ] = 0.4 × (1 − 0.4)

Z =
N

∑
i=1

1

√N

Yi − E(Y )

√(V (Y )

N Z
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Define a function
This function draws samplesize observations from binomial distribution, calculate  for
each sample, and repeat this Nreps times.

f_simu_CLT <- function(Nreps, samplesize, distp ){

  output = numeric(Nreps)
  for (i in 1:Nreps ){

    test <- rbinom(n = samplesize, size = 1, prob = distp)

    EY <- distp
    VY <- (1 - distp)*distp

    output[i] <- ( mean(test) - EY ) / sqrt( VY / samplesize )
  }

  return(output)

}

Z
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# Set the seed for the random number
set.seed(12345)

# Run simulation 
Nreps = 500
result_CLT1 <- f_simu_CLT(Nreps, samplesize = 10 , distp = 0.4 )
result_CLT2 <- f_simu_CLT(Nreps, samplesize = 1000, distp = 0.4 )

# Random draw from standard normal distribution as comparison
result_stdnorm = rnorm(Nreps)

# Create dataframe
result_CLT_data <- data.frame(  Ybar_standardized_10 = result_CLT1, 
                            Ybar_standardized_1000 = result_CLT2,
                            StandardNormal = result_stdnorm )
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Now take a look at the distribution.

# load tidyverse
library("tidyverse")

## Warning: package 'tidyverse' was built under R version 4.0.3

## Warning: package 'ggplot2' was built under R version 4.0.3

## Warning: package 'dplyr' was built under R version 4.0.4

# Use "melt" to change the format of result_data
data_for_plot <- tidyr::pivot_longer(data = result_CLT_data, cols = everything())

# Use "ggplot2" to create the figure.
fig <- 
  ggplot(data = data_for_plot) +
  xlab("Sample mean") + 
  geom_density(aes(x = value, colour = name ),  ) + 
  geom_vline(xintercept=0 ,colour="black")
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plot(fig)
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Hypothesis Testing based on CLT
Standard normal dist has mean 0 and standard deviation 1.

Under this distribution, values larger than  appeared only about 5%!!!

We say if  is larger than 2 in absolute value, we judge the hypothesis is unlikley to be
true at 5%.

We often say the sample mean is “significantly” different from 0.

±2

t(μ)
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Testing the difference of sample average between two
groups

Suppose that you want to test whether treatment effect is zero or not.

The null hypothesis $$ H0 : E[Y{i}|D{i}=1]-E[Y{i}|D_{i}=0] = 0 $$

t-statistics in this case is

Here,  is conditional sample mean of each group .

t =
Ȳ1 − Ȳ0

ŜE(Ȳ1 − Ȳ0)

Ȳd d
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The standard error is

where  is the population variance of observations in group .

SE(Ȳ1 − Ȳ0) = √ +
V 1(Y )

N1

V 0(Y )

N0

V d(Y ) d
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