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Observational Study (観察研究)

Researchers in social science cannot always conduct a randomized control trial.

Instead, we need to use observational data in which treatment assignment may not be
random.

An approach in this case is controlling observable characteristics that causes a selection
bias.

This approach is essentially estimation of linear regression model (線形回帰モデル) by
ordinally least squares (OLS, 最⼩⼆乗法).

3 / 52



Overview
Introduce an idea of matching (マッチング) estimator.

Identification of treatment effect under selection on observable assumption.
Linear regression is a special case of matching estimator.

Linear regression: framework, practical topics, inference
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Selection on Observables, or Matching
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Matching to eliminate a selection bias
Idea: Compare individuals with the same observed characteristics  across treatment
and control groups

If treatment choice is driven by observed characteristics (such as age, income, gender, etc),
controlling for such factor would eliminate the selection.

Two key assumptions in matching

X
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Assumption 1: Selection on observables
Let  denote the observed characteristics (sometimes called covariates (共変量))

age, income, education, race, etc..

Assumption 1:

Conditional on , treatment assignment is random.

This assumption is often referred in a different name:
Selection on observables
Ignorability
Unconfoundedness

Xi

Di ⊥ (Y0i,Y1i) |Xi

Xi
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Assumption 2: Overlapping assumption
Assumption 2:

Given , we should be able to observe people from both control and treatment group.

The probability  is called propensity score (傾向スコア).

P(Di = 1|Xi = x) ∈ (0, 1) ∀x

x

P(Di = 1|Xi = x)
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Identification of Treatment Effect Parameters
Assumption 1 (unconfoundedness) implies that

Once you conditioning on , the argument is essentially the same as the one in RCT.

E[Y1i|Di = 1,Xi] = E[Y1i|Di = 0,Xi] = E[Y1i|Xi]

E[Y0i|Di = 1,Xi] = E[Y0i|Di = 0,Xi] = E[Y0i|Xi]

Xi
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The  conditional on  is given by

Assumption 2 (overlapping) is needed to use the following

Why? Overlapping assumption  means that for each , we
should have people in both treatment and control group.

If not, we cannot observe both  for .

With two assumptions,

ATT Xi = x

E[Y1i − Y0i|Di = 1,Xi] = E[Y1i|Di = 1,Xi] − E[Y0i|Di = 1,Xi]

= E[Y1i|Di = 1,Xi] − E[Y0i|Di = 0,Xi]

E[Ydi|Di = d,Xi] = E[Yi|Di = d,Xi] for d = 0, 1

P(Di = 1|Xi = x) ∈ (0, 1) x

E[Yi|Di = d,Xi] d = 0, 1

E[Y1i − Y0i|Di = 1,Xi] = E[Yi|Di = 1,Xi]
avg with Xi in treatment

− E[Yi|Di = 0,Xi]
avg with Xi in control
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ATT 
ATT is given by

E[Y1i − Y0i|Di = 1]

ATT = E[Y1i − Y0i|Di = 1]

= ∫ E[Y1i − Y0i|Di = 1,Xi = x]fXi
(x|Di = 1)dx

= E[Yi|Di = 1] − ∫ (E[Yi|Di = 0,Xi = x]) fXi
(x|Di = 1)
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ATT 
ATE is

E[Y1i − Y0i]

ATE =E[Y1i − Y0i]

= ∫ E[Y1i − Y0i|Xi = x]fXi
(x)dx

= ∫ E[Y1i|Di = 1,Xi = x]fXi
(x)dx + ∫ E[Y0i|Di = 0,Xi = x]fXi

(x)dx

= ∫ E[Yi|Di = 1,Xi = x]fXi
(x)dx + ∫ E[Yi|Di = 0,Xi = x]fXi

(x)dx
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From Identification to Estimation
We need to estimate two conditional expectations  and 

Several ways to implement this.

1. Regression: Nonparametric and Parametric
2. Nearest neighborhood matching (最近傍マッチング)
3. Propensity Score Matching (傾向スコアマッチング)

Here, I only explain a parametric regression as a way to implement the matching method.

See Appendix and textbooks for the details of matching estimators.

E[Yi|Di = 1,Xi = x]
E[Yi|Di = 0,Xi = x]
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From Matching to Linear Regression Model
Assume that

Here, treament effect is given by .

You will have a linear regression model

Running a linear regression to obtain the treatment effect parameter .

E[Yi|Di = 0,Xi = x] = β ′xi

E[Yi|Di = 1,Xi = x] = β ′xi + τ

τ

yi = β ′xi + τDi + ϵi,E[ϵi|Di,xi] = 0

τ
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Linear Regression: Framework
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Regression (回帰) framework

Linear regression model (線形回帰モデル) is defined as

: index for observations. .
: dependent variable (被説明変数)

: explanatory variable (説明変数)
: error term (誤差項)
: coefficients (係数)

Data (sample): 

We want to estimate coefficients .

Yi = β0 + β1X1i + ⋯ + βKXKi + ϵi

i i = 1, ⋯ ,N
Yi
Xki

ϵi
β

{Yi,Xi1, … ,XiK}Ni=1

β
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Ordinaly Least Squares (最⼩⼆乗法、OLS)

OLS estimators are the minimizers of the sum of squared residuals:

First order conditions characterize the OLS estimator. Denote it by .

min
β0,⋯,βK

N

∑
i=1

(Yi − (β0 + β1Xi1 + ⋯ + βKXiK))21

N

β̂
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Residual Regression (残差回帰)

Consider the model

Suppose that you are interested in  (say treatment effect parameter).

Residual regression characterizes the OLS estimator of  in the following way.

Yi = β0 + αDi + β1X1i + ⋯ + βKXKi + ϵi

α

α̂
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Frisch–Waugh–Lovell Theorem
1. Run OLS regression of  on all other explanatory variables . Obtain the

residual .

2. Run OLS regression of  on all other explanatory variables . Obtain the
residual .

3. Run OLS regression of  on  without constant term. The OLS estimator  is 

Di 1,X1i, ⋯ ,XKi

ûDi

Yi 1,X1i, ⋯ ,XKi

ûYi

û
Y
i û

D
i α̂

α̂ =
∑ ûYi û

D
i

∑(ûDi )2
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How to use FWL theorem
1. Computational advantage if you are interested in a particular coefficient. Use this idea in

estimation of panel data model.

1. Useful to see how the coefficient of interest is estimated. We will see this later in relation to
multicolinearity (多重共線性).

1. Double machine learning (Chernozhukov et al 2018): Estimation of treatment effect
parameters when so many covariates are available.
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Assumptions for OLS
1. Random sample (ランダムサンプル):  is i.i.d. (identically and

independently distributed) drawn sample

2. mean independence:  has zero conditional mean

3. Large outliers are unlikely: The random variable  and  have finite fourth moments.

4. No perfect multicollinearity (多重共線性): No linear relationship between explanatory
variables.

{Yi,Xi1, … ,XiK}

ϵi

E[ϵi|Xi1, … ,XiK] = 0

Yi Xik
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Theoretical Properties of OLS estimator
1. Unbiasedness: Conditional on the explantory variables , the expectation of the OLS

estimator  is equal to the true value .

2. Consistency: As the sample size  goes to infinity, the OLS estimator  converges to  in
probability

3. Asymptotic normality (漸近正規性): discuss later.

X

β̂ β

E[β̂|X] = β

N β̂ β

β̂
p
⟶ β
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Linear Regression: Practical Topics
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Interpretation of Regression Coefficients
Remember that

The coefficient : the effect of  on  ceteris paribus (all things being equal)
Equivalently, if  is continuous random variable,

If we can estimate  without bias, can obtain causal effect of  on .

Yi = β0 + β1X1i + ⋯ + βKXKi + ϵi

βk Xk Y

Xk

= βk
∂Y

∂Xk

βk Xk Y
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Common Specifications in Linear Regression Model
Several specifications frequently used in empirical analysis.

1. Nonlinear term
2. log specification
3. dummy (categorical) variables
4. interaction terms (交差項)
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Nonlinear term (⾮線形項)

Non-linear relationship between  and  in a linearly additive form

As long as the error term  appreas in a additively linear way, we can estimate the
coefficients by OLS.

Multicollinarity could be an issue if we have many polynomials (多項式).
You can use other non-linear variables such as  and .

Y X

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + ϵi

ϵi

log(x) √x
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log specification
Using log changes the interpretation of the coefficient  in terms of scales.

Dependent Explanatory interpretation

1 unit increase in  causes  units change in Y

1 unit increase in  causes  change in 

 increase in  causes  unit change in 

 increase in  causes  change in 

β

Y X X β

logY X X 100β% Y

Y logX 1% X β/100 Y

logY logX 1% X β% Y
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Dummy variable (ダミー変数)

A dummy variable takes only 1 or 0. This is used to express qualititative information
Example: Dummy variable for race

The coefficient on a dummy variable captures the difference of the outcome  between
categories

The coefficient  captures the difference of  between white and non-white people.

whitei = { 1 if white

0 otherwise

Y

Yi = β0 + β1whitei + ϵi

β1 Y
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Interaction term (交差項)

You can add the interaction of two explanatory variables in the regression model.
For example:

where  is the earnings of person  and  is the years of schooling for person .
The effect of  is

This allows for heterogeneous effects of education across races.

wagei = β0 + β1educi + β2whitei + β3educi × whitei + ϵi

wagei i educi i

educi

= β1 + β3whitei,
∂wagei
∂educi
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Measures of Fit
We often use  (決定係数) as a measure of the model fit.
Denote the fitted value as 

Also called prediction from the OLS regression.

R2

ŷ i

ŷ i = β̂0 + β̂1Xi1 + ⋯ + β̂KXiK
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 is defined as

where

 captures the fraction of the variation of  explained by the regression model.
Adding variables always (weakly) increases .

R2

R2 = ,
SSE

TSS

 SSE = ∑
i

(ŷ i − ȳ)2,  TSS = ∑
i

(yi − ȳ)2

R2 Y
R2
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In a regression model with multiple explanatory variables, we often use adjusted  that
adjusts the number of explanatory variables

where

R2

R̄
2

= 1 −
N − 1

N − (K + 1)

SSR

TSS

SSR = ∑
i

(ŷ i − yi)
2(= ∑

i

û
2
i )
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Linear Regression: Inference
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Statistical Inference of OLS Estimator
The OLS estimator is random variables as it depends on a drawn sample.

We need to conduct statistical inference to evaluate statistical uncertainty of the OLS
estimates.

Plan

Asymptotic distribution (漸近分布) of OLS estimator
Statistical inference:
Homoskedasticity (均⼀分散) vs Heteroskedasticity (不均⼀分散)
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Asymptotic Normality (漸近正規性) of OLS Estimator

Under the OLS assumption, the OLS estimator has asymptotic normality

 is called asymptotic variance (matrix) given by

 is  vector.

√N(β̂ − β)
d

→ N (0,V )

V

V
(K+1)×(K+1)

= E[x′
ixi]

−1E[x′
ixiϵ

2
i ]E[x′

ixi]
−1

xi = (1,Xi1, ⋯ ,XiK)′ (K + 1) × 1
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We can approximate the distribution of  by

The individual coefficient  follows

β̂

β̂ ∼ N(β,V /N)

βk

β̂k ∼ N(βk,Vkk/N)
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Estimation of Asymptotic Variance (漸近分散)

 is an unknown object. Need to be estimated.
Consider the estimator  for  using sample analogues

where  is the residual.
Technically speaking,  converges to  in probability.

We often use the (asymptotic) standard error .

The standard error is an estimator for the standard deviation of the OLS estimator .

V

V̂ V

V̂ = (
N

∑
i=1

x
′
ixi)

−1

(
N

∑
i=1

x
′
ixiϵ̂

2
i ) (

N

∑
i=1

x
′
ixi)

−1
1

N

1

N

1

N

ϵ̂ i = yi − (β̂0 + ⋯ + β̂KXiK)
V̂ V

SE(β̂k) = √V̂ kk/N

β̂k
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Hypothesis testing
You might want to test a particular hypothesis regarding those coefficients.

Does x really affects y?
Is the production technology the constant returns to scale?

38 / 52



3 Steps in Hypothesis Testing
Step 1: Consider the null hypothesis  and the alternative hypothesis 

where  is the known number you set by yourself.

Step 2: Define t-statistic by

Step 3: We reject  is at -percent significance level if

where  is the  percentile of the standard normal distribution. We say we fail to
reject  if the above does not hold.

H0 H1

H0 : β1 = k,H1 : β1 ≠ k

k

tn =
β̂1 − k

SE(β̂1)

H0 α

|tn| > Cα/2

Cα/2 α/2
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Caveats on Hypothesis Testing

We often say  is statistically significant (統計的有意) at  level if  when we
set .

You should also discuss economic significance (経済的有意) of the coefficient in analysis.

Case 1: Small but statistically significant coefficient.
As the sample size  gets large, the  decreases.

Case 2: Large but statistically insignificant coefficient.
The variable might have an important (economically meaningful) effect.
But you may not be able to estimate the effect precisely with the sample at your hand.

β̂ 5% |tn| > 1.96
k = 0

N SE
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F test
We often test a composite hypothesis that involves multiple parameters such as

We use F test in such a case.

H0 : β1 + β2 = 0,  H1 : β1 + β2 ≠ 0
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Confidence interval (信頼区間)

95% confidence interval

Interpretation: If you draw many samples (dataset) and construct the 95% CI for each
sample, 95% of those CIs will include the true parameter.

CIn = {k : | | ≤ 1.96}

= [β̂1 − 1.96 × SE(β̂1), β̂1 + 1.96 × SE(β̂1)]

β̂1 − k

SE(β̂1)
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Homoskedasticity vs Heteroskedasticity
The error term  has heteroskedasticity (不均⼀分散) if  depends on . The
asymptotic variance is

If not, we call  has homoskedasticity (均⼀分散). In this case,

where .

ϵi V ar(ui|Xi) Xi

V = E[x′
ixi]

−1E[x′
ixiϵ

2
i ]E[x′

ixi]
−1

ϵi

V = E[x′
i
xi]

−1σ2

σ2 = V (ϵi)
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Standard Errors in Practice
Standard errors under heteroskedasticity assumption is called heteroskedasticity robust
standard errors (不均⼀分散に頑健な標準誤差)

In many statistical packages (including R and Stata), the standard errors for the OLS
estimators are calculated under homoskedasticity assumption as a default.

However, if the error has heteroskedasticity, the standard error under homoskedasticity
assumption will be underestimated.

In OLS, we should always use heteroskedasticity robust standard error.
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Appendix: Matching Estimator
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Estimation Methods
We need to estimate  and 

Several ways to implement the above idea

1. Regression: Nonparametric and Parametric
2. Nearest neighborhood matching
3. Propensity Score Matching

E[Yi|Di = 1,Xi = x] E[Yi|Di = 0,Xi = x]
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Approach 1: Regression, or Analogue Approach
Let  be an estimator of  for 
The analog estimators are

How to estimate  ?

μ̂k(x) μk(x) = E[Yi|Di = k,Xi = x] k ∈ {0, 1}

^ATE =
N

∑
i=1

(μ̂1(Xi) − μ̂0(Xi))

^ATT =

1

N

N−1 ∑N
i=1 Di(Yi − μ̂0(Xi))

N−1 ∑
N

i=1 Di

μk(x) = E[Yi|Di = k,Xi = x]
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Nonparametric Estimation
Suppose that  is discrete with small 

Ex: two demographic characteristics (male/female, white/non-white).  \bigskip
Then, a nonparametric binning estimator is

\bigskip
Here, I do not put any parametric assumption on .

Xi ∈ {x1, ⋯ ,xK} K

K = 4

μ̂k(x) =
∑

N

i=1 1{Di = k,Xi = x}Yi

∑
N

i=1 1{Di = k,Xi = x}

μk(x) = E[Yi|Di = k,Xi = x]
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Curse of dimensionality
Issue: Poor performance if  is large due to many covariates.

So many potential groups, too few observations for each group.
With  variables, each of which takes  values,  possible groups (bins) in total.

This is known as curse of dimensionality.
Relatedly, if  is a continuous random variable, can use kernel regression.

K

K L LK

X
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Parametric Estimation, or going back to linear regression
If you put parametric assumption such as

then, you will have a model

You can think the matching estimator as controlling for omitted variable bias by adding
(many) covariates (control variables) .

E[Yi|Di = 0,Xi = x] = β ′xi

E[Yi|Di = 1,Xi = x] = β ′xi + τ0

yi = β ′xi + τDi + ϵi

xi
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Approach 2: Nearest Neighborhood Matching
Idea: Find the counterpart in other group that is close to me.
Define  and  be the estimator for (hypothetical) outcomes when treated and not
treated.

 is the set of  individuals in the opposite group who are "close" to individual 
Several ways to define the distance between  and , such as

Need to choose (1)  and (2) the measure of distance

M−

ŷ i(0) ŷ i(1)

ŷ i(0) = {
yi if Di = 0
∑j∈LM(i) yj if Di = 11

M

LM(i) M i

Xi Xj

dist(Xi,Xj) = ||Xi − Xj||
2

M
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Approach 3: Propensity Score Matching
Use propensity score  as a distance to define who is the closest to me.
Step 1: Estimate propensity score function by logit or probit using a flexible function of .
Step 2: Calculate the propensity score for each observation. Use it to define the pair.

P(Di = 1|Xi = x)
Xi
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