Regression 1: Framework

Instructor: Yuta Toyama

Last updated: 2021-06-16

Introduction

Observational Study（観察研究）

－Researchers in social science cannot always conduct a randomized control trial．
－Instead，we need to use observational data in which treatment assignment may not be random．
－An approach in this case is controlling observable characteristics that causes a selection bias．
－This approach is essentially estimation of linear regression model（線形回帰モデル）by ordinally least squares（OLS，最小二乗法）．

Overview

－Introduce an idea of matching（マッチング）estimator．
－Identification of treatment effect under selection on observable assumption．
－Linear regression is a special case of matching estimator．
－Linear regression：framework，practical topics，inference

Selection on Observables, or Matching

Matching to eliminate a selection bias

- Idea: Compare individuals with the same observed characteristics X across treatment and control groups
- If treatment choice is driven by observed characteristics (such as age, income, gender, etc), controlling for such factor would eliminate the selection.
- Two key assumptions in matching

Assumption 1：Selection on observables

－Let X_{i} denote the observed characteristics（sometimes called covariates（共変量））
－age，income，education，race，etc．．
－Assumption 1：

$$
D_{i} \perp\left(Y_{0 i}, Y_{1 i}\right) \mid X_{i}
$$

－Conditional on X_{i} ，treatment assignment is random．
－This assumption is often referred in a different name：
－Selection on observables
－Ignorability
－Unconfoundedness

Assumption 2：Overlapping assumption

－Assumption 2：

$$
P\left(D_{i}=1 \mid X_{i}=x\right) \in(0,1) \forall x
$$

－Given x ，we should be able to observe people from both control and treatment group．
－The probability $P\left(D_{i}=1 \mid X_{i}=x\right)$ is called propensity score（傾向スコア）．

Identification of Treatment Effect Parameters

- Assumption 1 (unconfoundedness) implies that

$$
\begin{aligned}
& E\left[Y_{1 i} \mid D_{i}=1, X_{i}\right]=E\left[Y_{1 i} \mid D_{i}=0, X_{i}\right]=E\left[Y_{1 i} \mid X_{i}\right] \\
& E\left[Y_{0 i} \mid D_{i}=1, X_{i}\right]=E\left[Y_{0 i} \mid D_{i}=0, X_{i}\right]=E\left[Y_{0 i} \mid X_{i}\right]
\end{aligned}
$$

- Once you conditioning on X_{i}, the argument is essentially the same as the one in RCT.
- The $A T T$ conditional on $X_{i}=x$ is given by

$$
\begin{aligned}
E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1, X_{i}\right] & =E\left[Y_{1 i} \mid D_{i}=1, X_{i}\right]-E\left[Y_{0 i} \mid D_{i}=1, X_{i}\right] \\
& =E\left[Y_{1 i} \mid D_{i}=1, X_{i}\right]-E\left[Y_{0 i} \mid D_{i}=0, X_{i}\right]
\end{aligned}
$$

- Assumption 2 (overlapping) is needed to use the following

$$
E\left[Y_{d i} \mid D_{i}=d, X_{i}\right]=E\left[Y_{i} \mid D_{i}=d, X_{i}\right] \text { for } d=0,1
$$

- Why? Overlapping assumption $P\left(D_{i}=1 \mid X_{i}=x\right) \in(0,1)$ means that for each x, we should have people in both treatment and control group.
- If not, we cannot observe both $E\left[Y_{i} \mid D_{i}=d, X_{i}\right]$ for $d=0,1$.
- With two assumptions,

$$
E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1, X_{i}\right]=\underbrace{E\left[Y_{i} \mid D_{i}=1, X_{i}\right]}_{\text {avg with } X_{i} \text { in treatment }}-\underbrace{E\left[Y_{i} \mid D_{i}=0, X_{i}\right]}_{\text {avg with } X_{i} \text { in control }}
$$

ATT $E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]$

- ATT is given by

$$
\begin{aligned}
A T T & =E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right] \\
& =\int E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1, X_{i}=x\right] f_{X_{i}}\left(x \mid D_{i}=1\right) d x \\
& =E\left[Y_{i} \mid D_{i}=1\right]-\int\left(E\left[Y_{i} \mid D_{i}=0, X_{i}=x\right]\right) f_{X_{i}}\left(x \mid D_{i}=1\right)
\end{aligned}
$$

ATT $E\left[Y_{1 i}-Y_{0 i}\right]$

- ATE is

$$
\begin{aligned}
A T E & =E\left[Y_{1 i}-Y_{0 i}\right] \\
& =\int E\left[Y_{1 i}-Y_{0 i} \mid X_{i}=x\right] f_{X_{i}}(x) d x \\
& =\int E\left[Y_{1 i} \mid D_{i}=1, X_{i}=x\right] f_{X_{i}}(x) d x+\int E\left[Y_{0 i} \mid D_{i}=0, X_{i}=x\right] f_{X_{i}}(x) d x \\
& =\int E\left[Y_{i} \mid D_{i}=1, X_{i}=x\right] f_{X_{i}}(x) d x+\int E\left[Y_{i} \mid D_{i}=0, X_{i}=x\right] f_{X_{i}}(x) d x
\end{aligned}
$$

From Identification to Estimation

－We need to estimate two conditional expectations $E\left[Y_{i} \mid D_{i}=1, X_{i}=x\right]$ and $E\left[Y_{i} \mid D_{i}=0, X_{i}=x\right]$
－Several ways to implement this．
1．Regression：Nonparametric and Parametric
2．Nearest neighborhood matching（最近傍マッチング）
3．Propensity Score Matching（傾向スコアマッチング）
－Here，I only explain a parametric regression as a way to implement the matching method．
－See Appendix and textbooks for the details of matching estimators．

From Matching to Linear Regression Model

- Assume that

$$
\begin{aligned}
& E\left[Y_{i} \mid D_{i}=0, X_{i}=x\right]=\beta^{\prime} x_{i} \\
& E\left[Y_{i} \mid D_{i}=1, X_{i}=x\right]=\beta^{\prime} x_{i}+\tau
\end{aligned}
$$

- Here, treament effect is given by τ.
- You will have a linear regression model

$$
y_{i}=\beta^{\prime} x_{i}+\tau D_{i}+\epsilon_{i}, E\left[\epsilon_{i} \mid D_{i}, x_{i}\right]=0
$$

- Running a linear regression to obtain the treatment effect parameter τ.

Linear Regression: Framework

Regression（回帰）framework

－Linear regression model（線形回帰モデル）is defined as

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{K} X_{K i}+\epsilon_{i}
$$

－i ：index for observations．$i=1, \cdots, N$ ．

- Y_{i} ：dependent variable（被説明変数）
- $X_{k i}$ ：explanatory variable（説明変数）
- ϵ_{i} ：error term（誤差項）
- β ：coefficients（係数）
－Data（sample）：$\left\{Y_{i}, X_{i 1}, \ldots, X_{i K}\right\}_{i=1}^{N}$
－We want to estimate coefficients β ．

Ordinaly Least Squares（最小二乗法，OLS）

－OLS estimators are the minimizers of the sum of squared residuals：

$$
\min _{\beta_{0}, \cdots, \beta_{K}} \frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}-\left(\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{K} X_{i K}\right)\right)^{2}
$$

－First order conditions characterize the OLS estimator．Denote it by $\hat{\beta}$ ．

Residual Regression（残差回帰）

－Consider the model

$$
Y_{i}=\beta_{0}+\alpha D_{i}+\beta_{1} X_{1 i}+\cdots+\beta_{K} X_{K i}+\epsilon_{i}
$$

－Suppose that you are interested in α（say treatment effect parameter）．
－Residual regression characterizes the OLS estimator of $\hat{\alpha}$ in the following way．

Frisch-Waugh-Lovell Theorem

1. Run OLS regression of D_{i} on all other explanatory variables $1, X_{1 i}, \cdots, X_{K i}$. Obtain the residual $\hat{u_{i}^{D}}$.
2. Run OLS regression of Y_{i} on all other explanatory variables $1, X_{1 i}, \cdots, X_{K i}$. Obtain the residual u_{i}^{Y}.
3. Run OLS regression of \hat{u}_{i}^{Y} on \hat{u}_{i}^{D} without constant term. The OLS estimator $\hat{\alpha}$ is

$$
\hat{\alpha}=\frac{\sum \hat{u}_{i}^{Y} \hat{u}_{i}^{D}}{\sum\left(\hat{u}_{i}^{D}\right)^{2}}
$$

How to use FWL theorem

1．Computational advantage if you are interested in a particular coefficient．Use this idea in estimation of panel data model．

1．Useful to see how the coefficient of interest is estimated．We will see this later in relation to multicolinearity（多重共線性）

1．Double machine learning（Chernozhukov et al 2018）：Estimation of treatment effect parameters when so many covariates are available．

Assumptions for OLS

1．Random sample（ランダムサンプル）：$\left\{Y_{i}, X_{i 1}, \ldots, X_{i K}\right\}$ is i．i．d．（identically and independently distributed）drawn sample

2．mean independence：ϵ_{i} has zero conditional mean

$$
E\left[\epsilon_{i} \mid X_{i 1}, \ldots, X_{i K}\right]=0
$$

3．Large outliers are unlikely：The random variable Y_{i} and $X_{i k}$ have finite fourth moments．
4．No perfect multicollinearity（多重共線性）：No linear relationship between explanatory variables．

Theoretical Properties of OLS estimator

1．Unbiasedness：Conditional on the explantory variables X ，the expectation of the OLS estimator $\hat{\beta}$ is equal to the true value β ．

$$
E[\hat{\beta} \mid X]=\beta
$$

2．Consistency：As the sample size N goes to infinity，the OLS estimator $\hat{\beta}$ converges to β in probability

$$
\hat{\beta} \xrightarrow{p} \beta
$$

3．Asymptotic normality（漸近正規性）：discuss later．

Linear Regression: Practical Topics

Interpretation of Regression Coefficients

- Remember that

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{K} X_{K i}+\epsilon_{i}
$$

- The coefficient β_{k} : the effect of X_{k} on Y ceteris paribus (all things being equal)
- Equivalently, if X_{k} is continuous random variable,

$$
\frac{\partial Y}{\partial X_{k}}=\beta_{k}
$$

- If we can estimate β_{k} without bias, can obtain causal effect of X_{k} on Y.

Common Specifications in Linear Regression Model

－Several specifications frequently used in empirical analysis．
1．Nonlinear term
2．log specification
3．dummy（categorical）variables
4．interaction terms（交差項）

Nonlinear term（非線形項）

－Non－linear relationship between Y and X in a linearly additive form

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\beta_{3} X_{i}^{3}+\epsilon_{i}
$$

－As long as the error term ϵ_{i} appreas in a additively linear way，we can estimate the coefficients by OLS．
－Multicollinarity could be an issue if we have many polynomials（多項式）．
－You can use other non－linear variables such as $\log (x)$ and \sqrt{x} ．

log specification

- Using log changes the interpretation of the coefficient β in terms of scales.

| Dependent | Explanatory | interpretation |
| :--- | :--- | :--- | :--- |
| Y | X | 1 unit increase in X causes β units change in Y |
| $\log Y$ | X | 1 unit increase in X causes $100 \beta \%$ change in Y |
| Y | $\log X$ | 1% increase in X causes $\beta / 100$ unit change in Y |
| $\log Y$ | $\log X$ | 1% increase in X causes $\beta \%$ change in Y |

Dummy variable（ダミ一変数）

－A dummy variable takes only 1 or 0 ．This is used to express qualititative information
－Example：Dummy variable for race

$$
\text { white }_{i}= \begin{cases}1 & \text { if white } \\ 0 & \text { otherwise }\end{cases}
$$

－The coefficient on a dummy variable captures the difference of the outcome Y between categories

$$
Y_{i}=\beta_{0}+\beta_{1} \text { white }_{i}+\epsilon_{i}
$$

The coefficient β_{1} captures the difference of Y between white and non－white people．

Interaction term（交差項）

－You can add the interaction of two explanatory variables in the regression model．
－For example：

$$
\text { wage }_{i}=\beta_{0}+\beta_{1} \text { educ }_{i}+\beta_{2} \text { white }_{i}+\beta_{3} \text { educ }_{i} \times \text { white }_{i}+\epsilon_{i}
$$

where wage $_{i}$ is the earnings of person i and $e d u c_{i}$ is the years of schooling for person i ．
－The effect of $e d u c_{i}$ is

$$
\frac{\partial w a g e_{i}}{\partial e d u c_{i}}=\beta_{1}+\beta_{3} w h i t e_{i}
$$

－This allows for heterogeneous effects of education across races．

Measures of Fit

－We often use R^{2}（決定係数）as a measure of the model fit．
－Denote the fitted value as \hat{y}_{i}

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i 1}+\cdots+\hat{\beta}_{K} X_{i K}
$$

－Also called prediction from the OLS regression．

- R^{2} is defined as

$$
R^{2}=\frac{S S E}{T S S}
$$

where

$$
S S E=\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}, T S S=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}
$$

- R^{2} captures the fraction of the variation of Y explained by the regression model.
- Adding variables always (weakly) increases R^{2}.
- In a regression model with multiple explanatory variables, we often use adjusted R^{2} that adjusts the number of explanatory variables

$$
\bar{R}^{2}=1-\frac{N-1}{N-(K+1)} \frac{S S R}{T S S}
$$

where

$$
S S R=\sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2}\left(=\sum_{i} \hat{u}_{i}^{2}\right)
$$

Linear Regression: Inference

Statistical Inference of OLS Estimator

－The OLS estimator is random variables as it depends on a drawn sample．
－We need to conduct statistical inference to evaluate statistical uncertainty of the OLS estimates．
－Plan
－Asymptotic distribution（漸近分布）of OLS estimator
－Statistical inference：
－Homoskedasticity（均一分散）vs Heteroskedasticity（不均一分散）

Asymptotic Normality（漸近正規性）of OLS Estimator

－Under the OLS assumption，the OLS estimator has asymptotic normality

$$
\sqrt{N}(\hat{\beta}-\beta) \xrightarrow{d} N(0, V)
$$

－V is called asymptotic variance（matrix）given by

$$
\underbrace{V}_{(K+1) \times(K+1)}=E\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right]^{-1} E\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i} \epsilon_{i}^{2}\right] E\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right]^{-1}
$$

－ $\mathbf{x}_{i}=\left(1, X_{i 1}, \cdots, X_{i K}\right)^{\prime}$ is $(K+1) \times 1$ vector．

- We can approximate the distribution of $\hat{\beta}$ by

$$
\hat{\beta} \sim N(\beta, V / N)
$$

- The individual coefficient β_{k} follows

$$
\hat{\beta}_{k} \sim N\left(\beta_{k}, V_{k k} / N\right)
$$

Estimation of Asymptotic Variance（漸近分散）

－V is an unknown object．Need to be estimated．
－Consider the estimator \hat{V} for V using sample analogues

$$
\hat{V}=\left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i} \hat{\epsilon}_{i}^{2}\right)\left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right)^{-1}
$$

where $\hat{\epsilon}_{i}=y_{i}-\left(\hat{\beta}_{0}+\cdots+\hat{\beta}_{K} X_{i K}\right)$ is the residual．
－Technically speaking，\hat{V} converges to V in probability．
－We often use the（asymptotic）standard error $S E\left(\hat{\beta}_{k}\right)=\sqrt{\hat{V}_{k k} / N}$ ．
－The standard error is an estimator for the standard deviation of the OLS estimator $\hat{\beta_{k}}$ ．

Hypothesis testing

- You might want to test a particular hypothesis regarding those coefficients.
- Does x really affects y?
- Is the production technology the constant returns to scale?

3 Steps in Hypothesis Testing

- Step 1: Consider the null hypothesis H_{0} and the alternative hypothesis H_{1}

$$
H_{0}: \beta_{1}=k, H_{1}: \beta_{1} \neq k
$$

where k is the known number you set by yourself.

- Step 2: Define t-statistic by

$$
t_{n}=\frac{\hat{\beta}_{1}-k}{S E\left(\hat{\beta}_{1}\right)}
$$

- Step 3: We reject H_{0} is at α-percent significance level if

$$
\left|t_{n}\right|>C_{\alpha / 2}
$$

where $C_{\alpha / 2}$ is the $\alpha / 2$ percentile of the standard normal distribution. We say we fail to reject H_{0} if the above does not hold.

Caveats on Hypothesis Testing

－We often say $\hat{\beta}$ is statistically significant（統計的有意）at 5% level if $\left|t_{n}\right|>1.96$ when we set $k=0$ ．
－You should also discuss economic significance（経済的有意）of the coefficient in analysis．
－Case 1：Small but statistically significant coefficient．
－As the sample size N gets large，the $S E$ decreases．
－Case 2：Large but statistically insignificant coefficient．
－The variable might have an important（economically meaningful）effect．
－But you may not be able to estimate the effect precisely with the sample at your hand．

F test

- We often test a composite hypothesis that involves multiple parameters such as

$$
H_{0}: \beta_{1}+\beta_{2}=0, H_{1}: \beta_{1}+\beta_{2} \neq 0
$$

- We use F test in such a case.

Confidence interval（信頼区間）

－95\％confidence interval

$$
\begin{aligned}
C I_{n} & =\left\{k:\left|\frac{\hat{\beta}_{1}-k}{S E\left(\hat{\beta}_{1}\right)}\right| \leq 1.96\right\} \\
& =\left[\hat{\beta}_{1}-1.96 \times S E\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+1.96 \times S E\left(\hat{\beta}_{1}\right)\right]
\end{aligned}
$$

－Interpretation：If you draw many samples（dataset）and construct the 95\％CI for each sample， 95% of those CIs will include the true parameter．

Homoskedasticity vs Heteroskedasticity

－The error term ϵ_{i} has heteroskedasticity（不均一分散）if $\operatorname{Var}\left(u_{i} \mid X_{i}\right)$ depends on X_{i} ．The asymptotic variance is

$$
V=E\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right]^{-1} E\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i} \epsilon_{i}^{2}\right] E\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right]^{-1}
$$

－If not，we call ϵ_{i} has homoskedasticity（均一分散）．In this case，

$$
V=E\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right]^{-1} \sigma^{2}
$$

where $\sigma^{2}=V\left(\epsilon_{i}\right)$ ．

Standard Errors in Practice

－Standard errors under heteroskedasticity assumption is called heteroskedasticity robust standard errors（不均一分散に頑健な標準誤差）
－In many statistical packages（including R and Stata），the standard errors for the OLS estimators are calculated under homoskedasticity assumption as a default．
－However，if the error has heteroskedasticity，the standard error under homoskedasticity assumption will be underestimated．
－In OLS，we should always use heteroskedasticity robust standard error．

Appendix: Matching Estimator

Estimation Methods

- We need to estimate $E\left[Y_{i} \mid D_{i}=1, X_{i}=x\right]$ and $E\left[Y_{i} \mid D_{i}=0, X_{i}=x\right]$
- Several ways to implement the above idea

1. Regression: Nonparametric and Parametric
2. Nearest neighborhood matching
3. Propensity Score Matching

Approach 1: Regression, or Analogue Approach

- Let $\hat{\mu}_{k}(x)$ be an estimator of $\mu_{k}(x)=E\left[Y_{i} \mid D_{i}=k, X_{i}=x\right]$ for $k \in\{0,1\}$
- The analog estimators are

$$
\begin{aligned}
& A \hat{T} E=\frac{1}{N} \sum_{i=1}^{N}\left(\hat{\mu}_{1}\left(X_{i}\right)-\hat{\mu}_{0}\left(X_{i}\right)\right) \\
& A \hat{T} T=\frac{N^{-1} \sum_{i=1}^{N} D_{i}\left(Y_{i}-\hat{\mu}_{0}\left(X_{i}\right)\right)}{N^{-1} \sum_{i=1}^{N} D_{i}}
\end{aligned}
$$

- How to estimate $\mu_{k}(x)=E\left[Y_{i} \mid D_{i}=k, X_{i}=x\right]$?

Nonparametric Estimation

- Suppose that $X_{i} \in\left\{x_{1}, \cdots, x_{K}\right\}$ is discrete with small K
- Ex: two demographic characteristics (male/female, white/non-white). $K=4$ \bigskip
- Then, a nonparametric binning estimator is

$$
\hat{\mu}_{k}(x)=\frac{\sum_{i=1}^{N} \mathbf{1}\left\{D_{i}=k, X_{i}=x\right\} Y_{i}}{\sum_{i=1}^{N} \mathbf{1}\left\{D_{i}=k, X_{i}=x\right\}}
$$

\bigskip

- Here, I do not put any parametric assumption on $\mu_{k}(x)=E\left[Y_{i} \mid D_{i}=k, X_{i}=x\right]$.

Curse of dimensionality

- Issue: Poor performance if K is large due to many covariates.
- So many potential groups, too few observations for each group.
- With K variables, each of which takes L values, L^{K} possible groups (bins) in total.
- This is known as curse of dimensionality.
- Relatedly, if X is a continuous random variable, can use kernel regression.

Parametric Estimation, or going back to linear regression

- If you put parametric assumption such as

$$
\begin{aligned}
& E\left[Y_{i} \mid D_{i}=0, X_{i}=x\right]=\beta^{\prime} x_{i} \\
& E\left[Y_{i} \mid D_{i}=1, X_{i}=x\right]=\beta^{\prime} x_{i}+\tau_{0}
\end{aligned}
$$

then, you will have a model

$$
y_{i}=\beta^{\prime} x_{i}+\tau D_{i}+\epsilon_{i}
$$

- You can think the matching estimator as controlling for omitted variable bias by adding (many) covariates (control variables) x_{i}.

Approach 2: M-Nearest Neighborhood Matching

- Idea: Find the counterpart in other group that is close to me.
- Define $\hat{y}_{i}(0)$ and $\hat{y}_{i}(1)$ be the estimator for (hypothetical) outcomes when treated and not treated.

$$
\hat{y}_{i}(0)= \begin{cases}y_{i} & \text { if } D_{i}=0 \\ \frac{1}{M} \sum_{j \in L_{M}(i)} y_{j} & \text { if } D_{i}=1\end{cases}
$$

- $L_{M}(i)$ is the set of M individuals in the opposite group who are "close" to individual i
- Several ways to define the distance between X_{i} and X_{j}, such as

$$
\operatorname{dist}\left(X_{i}, X_{j}\right)=\left\|X_{i}-X_{j}\right\|^{2}
$$

- Need to choose (1) M and (2) the measure of distance

Approach 3: Propensity Score Matching

- Use propensity score $P\left(D_{i}=1 \mid X_{i}=x\right)$ as a distance to define who is the closest to me.
- Step 1: Estimate propensity score function by logit or probit using a flexible function of X_{i}.
- Step 2: Calculate the propensity score for each observation. Use it to define the pair.

