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Roles of OLS Assumptions and How to defend them
Assumption 2:  has zero conditional mean 

This implies  for all . (or )
No correlation between error term and explanatory variables.

Assumption 4: No perfect multicollinearity

We need to think whether these assumptions are valid given the research setting.

Question
What if these assumptions are vilated?
How to defend these assumptions?

ϵi E[ϵi|Xi1, … , XiK] = 0
Cov(Xik, ϵi) = 0 k E[ϵiXik] = 0
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Takeaway for Causal Analysis
Suppose that you want to know the causal effect of  on  in the following linear model

The variation of the variable of interest  is important in the following senses.

1: Exogenous variation after conditioning on 
i.e., uncorrelated with error term
mean independence assumption (no bias)

2: Enough variation after conditioning on 
a key for precise estimation (smaller standard error)
related to multicolinearity

D Y

yi = α0 + α1Di + β ′xi

D

xi

xi
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Endogeneity
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Endogeneity problem
When  does not hold, we have endogeneity problem (内⽣性問題)

We call such  an endogenous variable (内⽣変数).

There are several cases in which we have endogeneity problem

1. Omitted variable bias (⽋落変数バイアス)
2. Measurement error (観測誤差)
3. Simultaneity (同時性)
4. Sample selection (サンプルセレクション)

Cov(xk, ϵ) = 0

xk
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Omitted Variable Bias (⽋落変数バイアス)

Consider the wage regression equation (true model)

where  is wage,  is the years of schooling, and  is the ability.

: the effect of the schooling on the wage holding other things fixed.

Issue: We do not often observe the ability of a person directly.

log Wi = β0 + β1Si + β2Ai + ui

E[ui|Si, Ai] = 0

Wi Si Ai

β1

8 / 30



Suppose that you omit  and run the following regression instead.

Notice that , so that  and  is likely to be correlated.

You can show that  is not consistent for , i.e.,

Ai

log Wi = α0 + α1Si + vi

vi = β2Ai + ui Si vi

α̂1 β1

α̂1

p
⟶ β1 + β2

Cov(Si, Ai)

V ar(Si)
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Omitted Variable Bias formula
Omitted variable bias depends on

1. The effect of the omitted variable (  here) on the dependent variable: 
2. Correlation between the omitted variable and the explanatory variable.

Summary table
: included,  omitted.  is the coefficient on .

Positive bias Negative bias

Negative bias Positive bias

Can discuss the direction of the bias

Ai β2

x1 x2 β2 x2

Cov(x1, x2) > 0 Cov(x1, x2) < 0

β2 > 0

β2 < 0
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Summary: Exogeneity of 
Mean independence is a key for unbiased estimation.

However, this is hard to argue, as we have to discuss about unobserved factors.

Moreover, there is no formal test for exogeneity assumption.
Question: Examine the correlation between the residual  and explanatory variables 
. Would this work?

How to avoid this issue?
1: Add control variables
2: Natural experiment

X

ϵ̂i Xik
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Adding Control Variables
Consider the model with an interest in .

Idea: Adding more variables into  means
controlling for the factors that are correlated with treatment variable .
avoiding omitted variables
mean independence assumption of  and  more likely hold.

Should we add variables as much as possible? Not necesarily.
Issue 1: More controls lead to less precise estimation. See this later.
Issue 2: Bad control problem

α1

yi = α0 + α1Di + β ′xi + ϵi,  E[ϵi|Di, xi] = 0

x
Di

Di ϵi
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Bad Control Problem
Consider the model

You are interested in , effects of going to a college on wage after controlling for
occupation.

However, occupation is certainly affected by college choice.

The estimated  cannot capture the effect of attending a college on wage through
occupation choice.

Here, the variable  is called a bad control. You should not include this to
estimate .

wagei = α0 + α1collegei + α2occupationi + ϵi,  E[ϵi|Di, xi] = 0

αi

α1

occupationi

α1

13 / 30



A Guidance on Variable Choice

Affect Not affect 

Affect  or
simultaneously
determined with 

Must to avoid omitted variable
bias.

Should not include, as it increases
the variance. But the bias does not
change.

 affects the variable No. Bad control problem (same as above)

Not correlated with 
Should include to decrease the
variance. But no bias even
without it.

(same as above)

yi yi

Xi

Xi

Xi

Xi
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Natural Experiment (⾃然実験)

Natural experiment refers to the situation where the variable of interest is determined
randomly as if it were in experiment.

It is however not the actual experiment.

Some examples:
Weather
Policy assignment is often determined by lottery (e.g., millitary draft)
Birth-related events (twin, exact date, etc)
and many more!!

Economists put effort to find such situation to establish causal estimates.
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Multicollinearity issue
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Perfect Multicollinearity
Perfect multicolinearity: One of the explanatory variable is a linear combination of other
variables.

In this case, you cannot estimate all the coefficients.

For example,

and .

Cannot estimate both  and .

yi = β0 + β1x1 + β2 ⋅ x2 + ϵi

x2 = 2x1

β1 β2
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To see this, the above model can be written as

this is the same as

You can estimate the composite term  as a coefficient on , but not  and 
separately.

yi = β0 + β1x1 + β2 ⋅ 2x1 + ϵi

yi = β0 + (β1 + 2β2)x1 + ϵi

β1 + 2β2 x1 β1 β2
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Intuition
Intuitively speaking, the regression coefficients are estimated by capturing how the
variation of the explanatory variable  affects the variation of the dependent variable   

Since  and  are moving together completely, we cannot say how much the variation of 
is due to  or , so that  and .

x y

x1 x2 y

x1 x2 β1 β2
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Example: Dummy variable
Consider the dummy variables that indicate male and famale.

If you put both male and female dummies into the regression,

Since  for all , we have perfect multicolinarity.

malei = { 1 if male

0 if female

femalei = { 1 if female

0 if male

yi = β0 + β1famalei + β2malei + ϵi

malei + famalei = 1 i
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You should always omit the dummy variable of one of the groups.

For example,

In this case,  is interpreted as the effect of being famale in comparison with male.
The omitted group is the basis for the comparison.

yi = β0 + β1famalei + ϵi

β1
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Multiple Dummy Variables
You should do the same thing when you deal with multiple groups such as

and

freshmani = { 1 if freshman

0 otherwise

sophomorei = { 1 if sophomore

0 otherwise

juniori = { 1 if junior

0 otherwise

seniori = { 1 if senior

0 otherwise

yi = β0 + β1freshmani + β2sophomorei + β3juniori + ϵi
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Imperfect Multicollinearity.
Imperfect Multicollinearity: Correlation between explanatory variables is high.

Although we can estimate the model by OLS, it affects the precision of the estimate, that is
standard errors.

To see this, we consider the following simple model (with homoskedasticity)

yi = β0 + β1x1i + β2x2i + ϵi, V (ϵi) = σ2
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Sampling variance of the OLS Estimator
You can show that the conditional variance (not asymptotic variance) is given by

 is the sample variance

 is the R-squared in the following regression of  on .

V (β̂1|X) =
σ2

N ⋅ V̂ (x1i) ⋅ (1 − R2
1)

V̂ (x1i)

V̂ (x1i) = ∑(x1i − x̄1)21

N

R2
1 x2 x1

x1i = π0 + π1x2i + ui
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Four factors that decrease the variance.
1.  is large
2.  is large

more variation in !
3.  is small.

 measures how well  is explained by other variables in a linear way.
The extreme case is  (i.e.,  is the linear combination of other variables)

4. Smaller variance of the error term .
This reflects how much the variation of  is explained.
More control variables lead to lower variance of the error term.
But remember the above point 3!!

N

V̂ (x1i)
x1i

R2
1

R2
1 x1i

R2
1 = 1 x1i

σ2

yi
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Summary: Enough variation of .
With more variation in , can precisely estimate the coefficient.

The variation of the variable after controlling for other factors is also crucial

If you include many control variables to deal with the omitted variable bias, you may end up
having no independent variation of .

X

X

X
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Robustness Analysis
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How to defend your analysis? Robustness Analysis
Exogeneity assumption (mean independence assumption) is hard to argue.

In a good empirical analysis, do robustness analysis (頑健性分析) to see how robust your
results are against concerns.

Deryugina "Some Tips For Robustness Checks And Empirical Analysis In General" provides
an overview.

Two major appraoches
Sensitivity analysis (感度分析) for control variables.
Placebo test (プラシーボテスト) -> See this in an empirical application.
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http://deryugina.com/some-tips-for-robustness-checks-and-empirical-analysis-in-general/


Sensitivity Analysis
Step 1: Consider a specification of the model with control variables that you think are
reasonable and estimate it. (baseline specification)

Step 2: Add additional controls to the above and re-estimate it.

Step 3: See how the estimated coefficient of interest (typically treatment variable) changes.
If it does not change that much, your result is robust (or endogeneity concern is small).
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Why is this a good way to discuss exogeneity?
The concern on exogeneity is the correlation between  and the error term.

If you add control variables and the estimated coefficient does not change, it suggests that
the effect of omitted variables are likely to be small.

However, this procedure is not formal. It is rather a practical technique.

See Altonji, Elder, and Taber (2005) and Oster (2019) for a more formal discussion.

Di
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