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Roles of OLS Assumptions and How to defend them

e Assumption 2: €; has zero conditional mean E|¢;| X;1,..., Xix] =0
o This implies Cov( Xk, €;) = 0 for all k. (or Ele; Xix| = 0)
o No correlation between error term and explanatory variables.

e Assumption 4: No perfect multicollinearity

We need to think whether these assumptions are valid given the research setting.

Question
o What if these assumptions are vilated?
o How to defend these assumptions?
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Takeaway for Causal Analysis

e Suppose that you want to know the causal effect of D on Y in the following linear model
y; = ag + oy D; + B’z
e The variation of the variable of interest D is important in the following senses.

e 1: Exogenous variation after conditioning on x;
o i.e., uncorrelated with error term
o mean independence assumption (no bias)

e 2: Enough variation after conditioning on x;
o a key for precise estimation (smaller standard error)
o related to multicolinearity
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Endogeneity
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Endogeneity problem

e When Cov(xg, €) = 0 does not hold, we have endogeneity problem (P& %R7E)
o We call such x; an endogenous variable (R£EZH).

e There are several cases in which we have endogeneity problem

1. Omitted variable bias (REZ#U 1 7 X)
2. Measurement error (EFHIZRZE)

3. Simultaneity ([ERF4)

4. Sample selection (B> )Ll o2 3>)
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Omitted Variable Bias (R3ZZ#)\1 7 X)

e Consider the wage regression equation (true model)

logW; = Bo + B1Si + B2 A; + u;
IﬁuﬂS@fﬁ]::()

where W; is wage, S; is the years of schooling, and A; is the ability.
e [(3;: the effect of the schooling on the wage holding other things fixed.

e [ssue: We do not often observe the ability of a person directly.
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e Suppose that you omit A; and run the following regression instead.
logW;, = a9 + a1.5; + v;
o Notice that v; = 824; + u;, so that S; and v; is likely to be correlated.

e You can show that &7 is not consistent for (1, i.e.,

Cou(S;, A;)
VCLT‘(S@')

D
&1 — B1+ B2
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Omitted Variable Bias formula

e Omitted variable bias depends on
1. The effect of the omitted variable ( A; here) on the dependent variable: 5o
2. Correlation between the omitted variable and the explanatory variable.

e Summary table
o x1:included, x5 omitted. B35 is the coefficient on xs.

Cov(z1,x2) > 0 Cov(z1,22) <0
B2 > 0  Positive bias Negative bias
B2 < 0 Negative bias Positive bias

e Can discuss the direction of the bias
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Summary: Exogeneity of X

e Mean independence is a key for unbiased estimation.
e However, this is hard to argue, as we have to discuss about unobserved factors.

e Moreover, there is no formal test for exogeneity assumption.
o Question: Examine the correlation between the residual €; and explanatory variables X,
. Would this work?

e How to avoid this issue?
o 1: Add control variables
o 2: Natural experiment
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Adding Control Variables

e Consider the model with an interest in o.
Yi = ap + alDi + ,B’CCZ‘ + €, E[€z|D'wxz] =0

e Idea: Adding more variables into £ means
o controlling for the factors that are correlated with treatment variable D).
o avoiding omitted variables
o mean independence assumption of D; and €; more likely hold.

e Should we add variables as much as possible? Not necesarily.
o Issue 1: More controls lead to less precise estimation. See this later.
o Issue 2: Bad control problem
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Bad Control Problem

e Consider the model
wage; = o + aycollege; + asoccupation; + €;, Ele;|D;,z;] =0

e You are interested in o, effects of going to a college on wage after controlling for
occupation.

e However, occupation is certainly affected by college choice.

e The estimated «; cannot capture the effect of attending a college on wage through
occupation choice.

e Here, the variable occupation; is called a bad control. You should not include this to
estimate a;.
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A Guidance on Variable Choice

Affect y;

Affect X; or
simultaneously
determined with X

Must to avoid omitted variable
bias.

X, affects the variable No. Bad control problem

Should include to decrease the
Not correlated with X; variance. But no bias even
without it.

Not affect y;

Should not include, as it increases
the variance. But the bias does not
change.

(same as above)

(same as above)
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Natural Experiment (B #A5R5R)

e Natural experiment refers to the situation where the variable of interest is determined
randomly as if it were in experiment.

e Itis however not the actual experiment.

e Some examples:
o Weather
o Policy assignment is often determined by lottery (e.g., millitary draft)
o Birth-related events (twin, exact date, etc)
o and many more!!

e Economists put effort to find such situation to establish causal estimates.
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Multicollinearity issue
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Perfect Multicollinearity

e Perfect multicolinearity: One of the explanatory variable is a linear combination of other
variables.

e In this case, you cannot estimate all the coefficients.
e For example,
yi = Bo + B1x1 + B2 - T2 + €
and xo = 2x7.

e Cannot estimate both 41 and Bs.
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e To see this, the above model can be written as
yi = Bo + iz + B2 - 271 + €
e thisis the same as
y; = Bo + (B1 + 2P2)x1 + €

e You can estimate the composite term 8; + 235 as a coefficient on x1, but not 8; and 3,
separately.
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Intuition

e Intuitively speaking, the regression coefficients are estimated by capturing how the
variation of the explanatory variable x affects the variation of the dependent variable y

e Since x1 and x2 are moving together completely, we cannot say how much the variation of y
is due to a1 or 2, so that 81 and [(s.
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Example: Dummy variable

e Consider the dummy variables that indicate male and famale.

o — <( 1 if male
e = L0 <f female
female; — <’ 1 if female

"0 if male

e If you put both male and female dummies into the regression,
yi = Po + P1famale; + Pamale; + €

e Since male; + famale; = 1 for all 4, we have perfect multicolinarity.
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e You should always omit the dummy variable of one of the groups.
e For example,
yi = Po + Prfamale; + €;

e In this case, 81 is interpreted as the effect of being famale in comparison with male.
o The omitted group is the basis for the comparison.
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Multiple Dummy Variables

e You should do the same thing when you deal with multiple groups such as

and

freshman; = <

sophomore; =

JUNLOT;

Senior;

-

1 if freshman

|0 otherwise

%r 1 +f sophomore
| 0 otherwise

(1 if junior
|0 otherwise

7

=2

1 if senior
\ 0 otherwise

y; = Bo + P1freshman; + Bysophomore; + Bsjunior; + €;
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Imperfect Multicollinearity.

e Imperfect Multicollinearity: Correlation between explanatory variables is high.

e Although we can estimate the model by OLS, it affects the precision of the estimate, that is
standard errors.

e To see this, we consider the following simple model (with homoskedasticity)

y; = Bo + i1, + Bomo; + €, V(e;) = o
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Sampling variance of the OLS Estimator

e You can show that the conditional variance (not asymptotic variance) is given by

0.2

YO = S S e - R

A

e V(x1;) is the sample variance

xlz — N g $1z—$1

J Rf is the R-squared in the following regression of x5 on x;.

I1; = Ty + MLy + U
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Four factors that decrease the variance.

1. N is large
2. V(zy;) is large
© more variation in xy;!
3. R% is small.
O R% measures how well x1; is explained by other variables in a linear way.

o The extreme case is Rf — 1 (i.e., x1; is the linear combination of other variables)

4. Smaller variance of the error term o2.

o This reflects how much the variation of y; is explained.
o More control variables lead to lower variance of the error term.
o But remember the above point 3!!
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Summary: Enough variation of X.

e With more variation in X, can precisely estimate the coefficient.
e The variation of the variable after controlling for other factors is also crucial

e If you include many control variables to deal with the omitted variable bias, you may end up
having no independent variation of X.
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Robustness Analysis
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How to defend your analysis? Robustness Analysis

e Exogeneity assumption (mean independence assumption) is hard to argue.

e In a good empirical analysis, do robustness analysis (BE{£%547) to see how robust your
results are against concerns.

e Deryugina "Some Tips For Robustness Checks And Empirical Analysis In General" provides
an overview.

e Two major appraoches
o Sensitivity analysis (BE5#f) for control variables.

o Placebo test (5 >—MRFA ) -> See this in an empirical application.
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http://deryugina.com/some-tips-for-robustness-checks-and-empirical-analysis-in-general/

Sensitivity Analysis
e Step 1: Consider a specification of the model with control variables that you think are
reasonable and estimate it. (baseline specification)
e Step 2: Add additional controls to the above and re-estimate it.

e Step 3: See how the estimated coefficient of interest (typically treatment variable) changes.
If it does not change that much, your result is robust (or endogeneity concern is small).
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Why is this a good way to discuss exogeneity?

e The concern on exogeneity is the correlation between D; and the error term.

e If you add control variables and the estimated coefficient does not change, it suggests that
the effect of omitted variables are likely to be small.

e However, this procedure is not formal. It is rather a practical technique.

e See Altonji, Elder, and Taber (2005) and Oster (2019) for a more formal discussion.
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