Instrumental Variable Estimation 1: Framework

Instructor: Yuta Toyama

Last updated: 2021-05-18

Introduction

Introduction: Endogeneity Problem and its Solution

- This chapter introduces **instrumental variable (IV, 操作変数)** method as a solution to endogeneity problem.
- The lecture plan
 - 1. More on endogeneity issues
 - 2. Framework
 - 3. Implementation in R

Endogeneity

More Examples of Endogeneity Problem

- Talk more on endogeneity problems.
 - 1. Omitted variable bias
 - 2. Measurement error
 - 3. Simultaneity

Example 1: More on Omitted Variable Bias

Remember the wage regression equation (true model)

$$egin{array}{ll} \log W_i = & eta_0 + eta_1 S_i + eta_2 A_i + u_i \ E[u_i|S_i,A_i] = & 0 \end{array}$$

where W_i is wage, S_i is the years of schooling, and A_i is the ability.

ullet Suppose that you omit A_i and run the following regression instead.

$$\log W_i = alpha_0 + \alpha_1 S_i + v_i$$

Notice that $v_i = \beta_2 A_i + u_i$, so that S_i and v_i is likely to be correlated.

Does addition control variables solve OVB?

- You might want to add more and more additional variables to capture the effect of ability.
 - Test scores, GPA, SAT scores, etc...
- However, how many variables should we conditioning so that S_i is indeed exogenous?
- Multivariate regression is valid under selection on observables.
- If there exists **unobserved heterogeneity** that matters both in wage and years of schooling, multivariate regression cannot deal with OVB.

Example 2: Measurement error

- Reporting error, wrong understanding of the question, etc...
- Consider the regression

$$y_i = eta_0 + eta_1 x_i^* + \epsilon_i$$

• Here, we only observe x_i with error:

$$x_i = x_i^st + e_i$$

- \circ e_i is independent from ϵ_i and x_i^* (called classical measurement error)
- \circ You can think e_i as a noise added to the data.

• The regression equation is

$$egin{array}{ll} y_i = & eta_0 + eta_1(x_i - e_i) + \epsilon_i \ = & eta_0 + eta_1x_i + (\epsilon_i - eta_1e_i) \end{array}$$

- Then we have correlation between x_i and the error $\epsilon_i-\beta_1e_i$, violating the mean independence assumption.
- Measurement error in explantory variables leads to smaller estimates, known as attenuation bias.

Example 3: Simultaneity (同時性) or reverse causality

- Dependent and explanatory variable are determined simultaneously.
- Consider the demand and supply curve

$$q^d=eta_0^d+eta_1^dp+eta_2^dx+u^d\ q^s=eta_0^s+eta_1^sp+eta_2^sz+u^s$$

ullet The equilibrium price and quantity are determined by $q^d=q^s.$

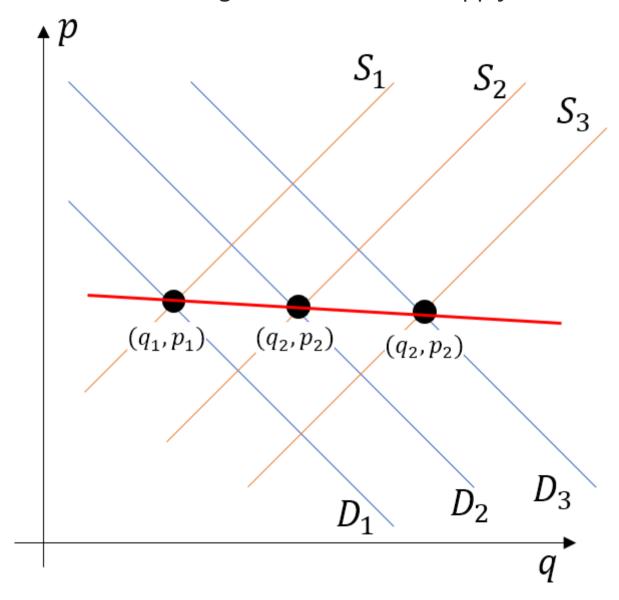
• In this case,

$$p = rac{(eta_2^s z - eta_2^d z) + (eta_0^s - eta_0^d) + (u^s - u^d)}{eta_1^d - eta_1^s}$$

implying the correlation between the price and the error term.

• Putting this differently, the data points we observed is the intersection of these supply and demand curves.

• How can we distinguish demand and supply?



Causal Effect of Price on Quantity?

- What is a causal effect of price on quantity? What is the sign (if it exists)?
- For consumer: Higher prices leads to lower demand.
- For (price-taking) firms: Higher prices leads to more supply.
- "Causal effect of price on quantity" is a meaningless concept unless you specify either demand or supply.

IV Idea

Idea of IV Regression

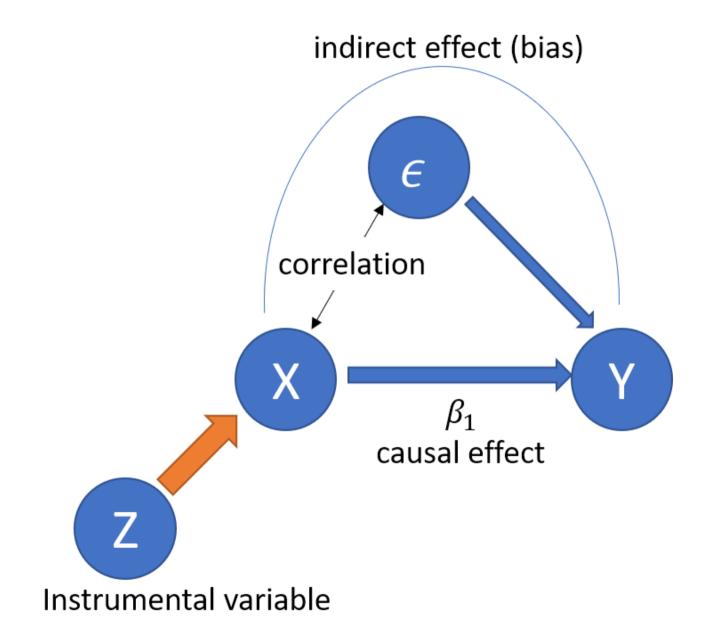
Let's start with a simple case.

$$y_i = eta_0 + eta_1 x_i + \epsilon_i, Cov(x_i, \epsilon_i)
eq 0$$

- Define the variable z_i named **instrumental variable (IV)** that satisfies the following conditions:
 - 1. Independence (独立性): $Cov(z_i, \epsilon_i) = 0$. No correlation between IV and error.
 - 2. **Relevance** (関連性): $Cov(z_i,x_i) \neq 0$. Correlation between IV and endogenous variable x_i .
- Idea: Use the variation of x_i induced by instrument z_i to estimate the direct (causal) effect of x_i on y_i , that is β_1 !.

More on Idea

- 1. Intuitively, the OLS estimator captures the correlation between x and y.
- 2. If there is no correlation between x and ϵ , it captures the causal effect β_1 .
- 3. If not, the OLS estimator captures both direct and indirect effect, the latter of which is bias.
- 4. Now, let's capture the variation of x due to instrument z,
 - Such a variation should exist under relevance assumption.
 - Such a variation should not be correlated with the error under independence assumption
- 5. By looking at the correlation between such variation and y, you can get the causal effect β_1 .



Identification of Parameter with IV

ullet Taking the covariance between y_i and z_i

$$Cov(y_i,z_i) = eta_1 Cov(x_i,z_i) + Cov(\epsilon_i,z_i)$$

• IV conditions implie that

$$eta_1 = rac{Cov(y_i, z_i)}{Cov(x_i, z_i)}$$

Question: Can you see the roles of IV conditions?

IV General Framework

Multiple endogenous variables and instruments

Consider the model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_K X_{Ki} + \beta_{K+1} W_{1i} + \cdots + \beta_{K+R} W_{Ri} + u_i$$

- $\circ Y_i$ is the dependent variable
- $\circ~X_{1i},\ldots,X_{Ki}$ are K endogenous (内生) regressors: $Cov(X_{ki},u_i)
 eq 0$ for all k.
- $\circ W_{1i},\ldots,W_{Ri}$ are R exogenous (外生) regressors which are uncorrelated with u_i . $Cov(W_{ri},u_i)=0$ for all r.
- $\circ \ u_i$ is the error term
- $\circ \ Z_{1i}, \ldots, Z_{Mi}$ are M instrumental variables
- $\circ \ \beta_0, \ldots, \beta_{K+R}$ are 1+K+R unknown regression coefficients

Two Stage Least Squares (2SLS, 二段階最小二乗法)

- Step 1: First-stage regression(s)
 - \circ For each of the endogenous variables (X_{1i},\ldots,X_{ki}), run an OLS regression on all IVs (Z_{1i},\ldots,Z_{mi}), all exogenous variables (W_{1i},\ldots,W_{ri}) and an intercept.
 - \circ Compute the fitted values ($\widehat{X}_{1i},\ldots,\widehat{X}_{ki}$).
- Step 2: **Second-stage regression**
 - \circ Regress the dependent variable Y_i on **the predicted values** of all endogenous regressors ($\widehat{X}_{1i},\ldots,\widehat{X}_{ki}$), all exogenous variables (W_{1i},\ldots,W_{ri}) and an intercept using OLS.
 - \circ This gives $\widehat{eta}_0^{TSLS},\ldots,\widehat{eta}_{k+r}^{TSLS}$, the 2SLS estimates of the model coefficients.

Why 2SLS works

- Consider a simple case with 1 endogenous variable and 1 IV.
- In the first stage, we estimate

$$x_i = \pi_0 + \pi_1 z_i + v_i$$

by OLS and obtain the fitted value $\widehat{x}_i = \widehat{\pi}_0 + \widehat{\pi}_1 z_i$.

• In the second stage, we estimate

$$y_i = \beta_0 + \beta_1 \widehat{x}_i + u_i$$

• Since \widehat{x}_i depends only on z_i , which is uncorrelated with u_i , the second stage can estimate β_1 without bias.

Conditions for IV

Conditions for Valid IVs: Necessary condition

- Depending on the number of IVs, we have three cases
 - 1. Over-identification (過剰識別): M>K
 - 2. Just identification (丁度識別): M=K
 - 3. Under-identification (過小識別): M < K
- The necessary condition is $M \geq K$.
 - We should have more IVs than endogenous variables.

Sufficient condition

- In a general framework, the sufficient conditions for valid instruments
 - 1. Independence: $Cov(Z_{mi}, u_i) = 0$ for all m.
 - 2. Relevance: In the second stage regression, the variables

$$\left(\widehat{X}_{1i},\ldots,\widehat{X}_{ki},W_{1i},\ldots,W_{ri},1
ight)$$

are not perfectly multicollinear.

What does the relevance condition mean?

Relevance condition

• In the simple example above, The first stage is

$$x_i = \pi_0 + \pi_1 z_i + v_i$$

and the second stage is

$$y_i = \beta_0 + \beta_1 \widehat{x}_i + u_i$$

• The second stage would have perfect multicollinarity if $\pi_1=0$ (i.e., $\widehat{x}_i=\pi_0$).

ullet Back to the general case, the first stage for X_k can be written as

$$X_{ki} = \pi_0 + \pi_1 Z_{1i} + \cdots + \pi_M Z_{Mi} + \pi_{M+1} W_{1i} + \cdots + \pi_{M+R} W_{Ri}$$

and one of π_1, \dots, π_M should be non-zero.

• Intuitively speaking, the instruments should be correlated with endogenous variables after controlling for exogenous variables

Check Instrument Validity: Relevance

- Weak instruments (弱操作変数) if those instruments explain little variation in the endogenous variables.
- Weak instruments lead to
 - 1. imprecise estimates (higher standard errors)
 - 2. The asymptotic distribution would deviate from a normal distribution even if we have a large sample.

A rule of thumb to check the relevance conditions.

- Consider the case with one endogenous variable X_{1i} .
- The first stage regression

$$X_k = \pi_0 + \pi_1 Z_{1i} + \dots + \pi_M Z_{Mi} + \pi_{M+1} W_{1i} + \dots + \pi_{M+R} W_{Ri}$$

• Conduct F test.

$$H_0: \pi_1 = \cdots = \pi_M = 0 \ H_1 : otherwise$$

- If we can reject this, we can say no concern for weak instruments.
- A rule of thumbs is that the F statistic should be larger than 10. (Stock, Wright, and Yogo 2012)

Independence (Instrument exogeneity)

- This is essentially non-testable assumption, as in mean independence assumption in OLS.
- Justification of this assumption depends on a context, institutional features, etc...