Instrumental Variable Estimation 2: Implementation in R

Instructor: Yuta Toyama

Last updated: 2021-05-18

Introduction

Introduction

- I cover three examples of instrumental variable regressions.
 - 1. Wage regression
 - 2. Demand curve
 - 3. Effects of Voter Turnout (Hansford and Gomez)

Wage regression

Example 1: Wage regression

- Use dataset "Mroz", cross-sectional labor force participation data that accompany "Introductory Econometrics" by Wooldridge.
 - Original data from "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions" by Thomas Mroz published in Econometrica in 1987.
 - Detailed description of data:
 https://www.rdocumentation.org/packages/npsf/versions/0.4.2/topics/mroz

```
library("foreign")

# You do not have to worry about a message "cannot read factor labels from Stata 5 files".
data <- read.dta("data/MROZ.DTA")

## Warning in read.dta("data/MROZ.DTA"): cannot read factor labels from Stata 5
## files</pre>
```

• Describe data

##								
##	Statistic	==== N	Mean	St. Dev.	===== Min	Pctl(25)	Pctl(75)	Max
##	inlf	 753	0.568	0.496	0	0	1	1
##	hours	753	740.576	871.314	0	0	1,516	4,950
##	kidslt6	753	0.238	0.524	0	0	0	3
##	kidsge6	753	1.353	1.320	0	0	2	8
##	age	753	42.538	8.073	30	36	49	60
##	educ	753	12.287	2.280	5	12	13	17
##	wage	428	4.178	3.310	0.128	2.263	4.971	25.000
##	repwage	753	1.850	2.420	0.000	0.000	3.580	9.980
##	hushrs	753	2,267.271	595.567	175	1,928	2,553	5,010
##	husage	753	45.121	8.059	30	38	52	60
##	huseduc	753	12.491	3.021	3	11	15	17
##	huswage	753	7.482	4.231	0.412	4.788	9.167	40.509
##	faminc	753	23,080.600	12,190.200	1,500	15,428	28,200	96,000
##	mtr	753	0.679	0.083	0.442	0.622	0.721	0.942
##	motheduc	753	9.251	3.367	0	7	12	17
##	fatheduc	753	8.809	3.572	0	7	12	17
##	unem	753	8.624	3.115	3	7.5	11	14
##	city	753	0.643	0.480	0	0	1	1
##	exper	753	10.631	8.069	0	4	15	45
##	nwifeinc	753	20.129	11.635	-0.029	13.025	24.466	96.000
##	lwage	428	1.190	0.723	-2.054	0.817	1.604	3.219
##	expersq	753	178.039	249.631	0	16	225	2,025
##								6-/-3

Consider the wage regression

$$\log(w_i) = eta_0 + eta_1 e duc_i + eta_2 exper_i + eta_3 exper_i^2 + \epsilon_i$$

- ullet We assume that $exper_i$ is exogenous but $educ_i$ is endogenous.
- As an instrument for $educ_i$, we use the years of schooling for his or her father and mother, which we call $fathereduc_i$ and $mothereduc_i$.
- Discussion on these IVs will be later.

```
library("AER")
library("dplyr")
library("texreg")
library("estimatr")
# data cleaning
data %>%
 select(lwage, educ, exper, expersg, motheduc, fatheduc) %>%
 filter( is.na(lwage) == 0 ) -> data
result OLS <- lm robust( lwage ~ educ + exper + expersg, data = data, se type = "HC1")
# IV regression using fathereduc and mothereduc
result IV <- iv robust(lwage ~ educ + exper + expersq |
                           fatheduc + motheduc + exper + expersq,
                       data = data, se type = "HC1")
# Show result
screenreg(l = list(result_OLS, result_IV), digits = 3,
          # caption = 'title',
         # custom.model.names = c("(I)", "(II)", "(III)", "(IV)", "(V)"),
          custom.coef.names = NULL, # add a class, if you want to change the names of variables.
          include.ci = F,include.rsquared = FALSE, include.adjrs = TRUE, include.nobs = TRUE,
          include.pvalues = FALSE, include.df = FALSE, include.rmse = FALSE,
          custom.header = list("lwage" = 1:2), # you can add header especially to indicate dependent
          stars = numeric(0)
                                                                                                   8 / 34
```

##			
##		 lw	age
##			
##		Model 1	Model 2
##			
##	(Intercept)	-0.522	0.048
##		(0.202)	(0.430)
##	educ	0.107	0.061
##		(0.013)	(0.033)
##	exper	0.042	0.044
##		(0.015)	(0.016)
##	expersq	-0.001	-0.001
##		(0.000)	(0.000)
##			
##	Adj. R^2	0.151	0.130
##	Num. obs.	428	428
##	========	=======	=======

How about the first stage? You should always check this!!

```
# First stage regression
result_1st <- lm(educ ~ motheduc + fatheduc + exper + expersq, data = data)</pre>
# F test
linearHypothesis(result_1st,
                  c("fatheduc = 0", "motheduc = 0"),
                 vcov = vcovHC, type = "HC1")
## Linear hypothesis test
##
## Hypothesis:
## fatheduc = 0
## motheduc = 0
##
## Model 1: restricted model
## Model 2: educ ~ motheduc + fatheduc + exper + expersq
##
## Note: Coefficient covariance matrix supplied.
##
##
    Res.Df Df F Pr(>F)
## 1
       425
       423 2 48.644 < 2.2e-16 ***
## 2
## ---
```

Discussion on IV

- Labor economists have used family background variables as IVs for education.
 - **Relevance**: OK from the first stage regression.
 - **Independence**: A bit suspicious. Parents' education would be correlated with child's ability through quality of nurturing at an early age.
- Still, we can see that these IVs can mitigate (though may not eliminate completely) the omitted variable bias.
- Discussion on the validity of instruments is crucial in empirical research.

Demand curve

Example 2: Estimation of the Demand for Cigaretts

- Demand model is a building block in many branches of Economics.
- For example, health economics is concerned with the study of how health-affecting behavior of individuals is influenced by the health-care system and regulation policy.
- Smoking is a prominent example as it is related to many illnesses and negative externalities.
- It is plausible that cigarette consumption can be reduced by taxing cigarettes more heavily.
- Question: how much taxes must be increased to reach a certain reduction in cigarette consumption? -> Need to know price elasticity of demand for cigaretts.

- Use CigarrettesSW in the package AER.
- a panel data set that contains observations on cigarette consumption and several economic indicators for all 48 continental federal states of the U.S. from 1985 to 1995.
- What is **panel data**? The data involves both time series and cross-sectional information.
 - \circ The variable is denoted as y_{it} , which indexed by individual i and time t.
 - \circ Cross section data y_i : information for a particular individual i (e.g., income for person i).
 - \circ Time series data y_t : information for a particular time period (e.g., GDP in year y)
 - \circ Panel data y_{it} : income of person i in year t.
- We will see more on panel data later in this course. For now, we use the panel data as just cross-sectional data (pooled cross-sections)

```
# load the data set and get an overview
data("CigarettesSW")
summary(CigarettesSW)
```

```
##
                               cpi
                                             population
        state
                                                                  packs
                  year
##
   ΑL
           : 2
                1985:48
                           Min.
                                  :1.076
                                           Min. : 478447
                                                              Min. : 49.27
          : 2
##
   AR
                1995:48
                           1st Qu.:1.076
                                          1st Qu.: 1622606
                                                              1st Qu.: 92.45
                                           Median : 3697472
##
   ΑZ
          : 2
                           Median :1.300
                                                              Median :110.16
##
   CA
          : 2
                           Mean :1.300
                                           Mean : 5168866
                                                              Mean
                                                                     :109.18
          : 2
##
   CO
                           3rd Ou.:1.524
                                           3rd Qu.: 5901500
                                                              3rd Ou.:123.52
##
   \mathsf{CT}
           : 2
                           Max. :1.524
                                           Max. :31493524
                                                              Max.
                                                                     :197.99
##
    (Other):84
##
        income
                                            price
                             tax
                                                              taxs
##
   Min. : 6887097
                        Min.
                               :18.00
                                        Min.
                                               : 84.97
                                                         Min. : 21.27
##
   1st Qu.: 25520384
                        1st Qu.:31.00
                                        1st Qu.:102.71
                                                         1st Qu.: 34.77
   Median : 61661644
                        Median :37.00
                                       Median :137.72
                                                         Median : 41.05
##
          : 99878736
                               :42.68
##
   Mean
                        Mean
                                        Mean
                                               :143.45
                                                         Mean
                                                                : 48.33
   3rd Qu.:127313964
                        3rd Qu.:50.88
                                       3rd Qu.:176.15
                                                         3rd Qu.: 59.48
##
##
   Max.
          :771470144
                        Max.
                               :99.00
                                        Max.
                                               :240.85
                                                         Max.
                                                                :112.63
##
```

Consider the following model

$$\log(Q_{it}) = \beta_0 + \beta_1 \log(P_{it}) + \beta_2 \log(income_{it}) + u_{it}$$

where

- $\circ \ Q_{it}$ is the number of packs per capita in state i in year t,
- \circ P_{it} is the after-tax average real price per pack of cigarettes, and
- $\circ income_{it}$ is the real income per capita. This is demand shifter.
- As an IV for the price, we use the followings:
 - $\circ~SalesTax_{it}$: the proportion of taxes on cigarettes arising from the general sales tax.
 - Relevant as it is included in the after-tax price
 - Exogenous(indepndent) since the sales tax does not influence demand directly, but indirectly through the price.
 - $\circ \ CigTax_{it}$: the cigarett-specific taxes

```
CigarettesSW %>%
  mutate( rincome = (income / population) / cpi) %>%
  mutate( rprice = price / cpi ) %>%
  mutate( salestax = (taxs - tax) / cpi ) %>%
  mutate( cigtax = tax/cpi ) -> Cigdata
```

Let's run the regressions

```
cig_ols <- lm_robust(log(packs) ~ log(rprice) + log(rincome) , data = Cigdata,se_type = "HC1")
#coeftest(cig ols, vcov = vcovHC, type = "HC1")
cig_ivreg <- iv_robust(log(packs) ~ log(rprice) + log(rincome)</pre>
                    log(rincome) + salestax + cigtax, data = Cigdata, se_type = "HC1")
#coeftest(cig ivreg, vcov = vcovHC, type = "HC1")
# Show result
screenreg(l = list(cig_ols, cig_ivreg), digits = 3,
          # caption = 'title'.
          custom.model.names = c("OLS", "IV"), custom.coef.names = NULL, # add a class, if you want
          include.ci = F,include.rsquared = FALSE, include.adjrs = TRUE, include.nobs = TRUE,
          include.pvalues = FALSE, include.df = FALSE, include.rmse = FALSE,
          custom.header = list("log(packs)" = 1:2), # you can add header especially to indicate depe
          stars = numeric(0)
```

```
##
##
                 log(packs)
##
##
               OLS
                       ΙV
## (Intercept) 10.067
                       9.736
##
              (0.502) (0.514)
## log(rprice) -1.334
                      -1.229
##
              (0.154) (0.155)
## log(rincome) 0.318
                       0.257
               (0.154)
##
                       (0.153)
## -----
## Adj. R^2
           0.542
                        0.539
## Num. obs. 96
```

• The first stage regression

```
## Linear hypothesis test
##
## Hypothesis:
## salestax = 0
## cigtax = 0
##
## Model 1: restricted model
## Model 2: log(rprice) ~ log(rincome) + log(rincome) + salestax + cigtax
##
## Note: Coefficient covariance matrix supplied.
##
    Res.Df Df F Pr(>F)
##
## 1
        94
## 2
        92 2 127.77 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Voting

Example 3: Effects of Turnout on Partisan Voting

- THOMAS G. HANSFORD and BRAD T. GOMEZ "Estimating the Electoral Effects of Voter Turnout" The American Political Science Review Vol. 104, No. 2 (May 2010), pp. 268-288
 - Link: https://www.cambridge.org/core/journals/american-political-science-review/article/estimating-the-electoral-effects-of-voter-turnout/8A880C28E79BE770A5CA1A9BB6CF933C
- Here, we will see a simplified version of their analysis.
- The dataset is here

```
library(readr)

HGdata <- read_csv("data/HansfordGomez_Data.csv")

stargazer::stargazer(as.data.frame(HGdata) %>% select(-starts_with("Yr")),type="text")
```

##								
##	=======================================	======	========	=======	======	=======	=======	=======
##	Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
##								
##	Year	27,401	1,973.972	16.111	1,948	1,960	1,988	2,000
##	FIPS_County	27,401	29,985.500	13,081.250	4,001	20,013	39,157	56,045
##	Turnout	27,401	65.562	10.514	20.366	58.477	72.613	100.000
##	Closing2	27,401	23.053	13.042	0	11	30	125
##	Literacy	27,401	0.058	0.234	0	0	0	1
##	PollTax	27,401	0.001	0.023	0	0	Θ	1
##	Motor	27,401	0.211	0.408	0	0	0	1
##	GubElection	27,401	0.434	0.496	0	0	1	1
##	SenElection	27,401	0.680	0.467	0	0	1	1
##	GOP_Inc	27,401	0.501	0.500	0	0	1	1
##	DNormPrcp_KRIG	27,401	0.005	0.208	-0.419	-0.093	0.001	2.627
##	GOPIT	27,401	33.282	34.066	0	0	66.3	100
##	<pre>DemVoteShare2_3MA</pre>	27,401	44.250	10.606	10.145	37.006	50.996	88.982
##	DemVoteShare2	27,401	43.622	12.415	6.420	34.954	51.858	97.669
##	RainGOPI	27,401	0.007	0.142	-0	-0.03	Θ	2
##	TO_DVS23MA	27,401	2,886.877	792.530	473.161	2,321.025	3,384.772	8,526.616
##	Rain_DVS23MA	27,401	0.355	10.188	-25.054	-4.019	0.028	144.257
##	dph	27,401	0.021	0.145	0	0	Θ	1
##	dvph	27,401	0.018	0.133	0	0	Θ	1
##	rph	27,401	0.025	0.155	0	0	Θ	1
##	rvph	27,401	0.025	0.155	0	0	0	1
##	state_del	27,401	0.037	0.187	-0.821	-0.090	0.172	0.619
44 44								

##								
##		======	M	Ct. D	========	======================================	=======: 	Marri
	Statistic	N 	Mean 	St. Dev.		Pctl(25)	Pctl(75)	Max
	dph_StateVAP		77,525.150	597,474.000	Θ	0	0	6,150,988
	dvph_StateVAP	,	63,138.400	•	0	0	0	12,700,000
##	rph_StateVAP	27,401	243,707.900	1,720,659.000	0	Θ	Θ	18,300,000
##	rvph_StateVAP	27,401	142,166.500	1,071,445.000	0	0	0	12,800,000
##	State_DVS_lag	27,401	46.896	8.317	22.035	40.767	52.197	80.872
##	State_DVS_lag2	27,401	2,268.381	786.199	485.533	1,661.934	2,724.515	6,540.244
##								

• Data description:

Name	Description		
Year	Election Year		
FIPS_County	FIPS County Code		
Turnout	Turnout as Pcnt VAP		
Closing2	Days between registration closing date and election		
Literacy	Literacy Test		
PollTax	Poll Tax		
Motor	Motor Voter		
GubElection	Gubernatorial Election in State		
SenElection	U.S. Senate Election in State		
GOP_Inc	Republican Incumbent		

Name	Description
Yr52	1952 Dummy
Yr56	1956 Dummy
Yr60	1960 Dummy
Yr64	1964 Dummy
Yr68	1968 Dummy
Yr72	1972 Dummy
Yr76	1976 Dummy
Yr80	1980 Dummy
Yr84	1984 Dummy
Yr88	1988 Dummy
Yr92	1992 Dummy
Yr96	1996 Dummy
Yr2000	2000 Dummy

Name	Description			
DNormPrcp_KRIG	Election day rainfall - differenced from normal rain for the day			
GOPIT	Turnout x Republican Incumbent			
DemVoteShare2_3MA	Partisan composition measure = 3 election moving avg. of Dem Vote Share			
DemVoteShare2	Democratic Pres Candidate's Vote Share			
RainGOPI	Rainfall measure x Republican Incumbent			
TO_DVS23MA	Turnout x Partisan Composition measure			
Rain_DVS23MA	Rainfall measure x Partisan composition measure			
dph	=1 if home state of Dem pres candidate			
dvph	=1 if home state of Dem vice pres candidate			

Name	Description
rph	=1 if home state of Rep pres candidate
rvph	=1 if home state of Rep vice pres candidate
state_del	avg common space score for the House delegation
dph_StateVAP	= dph*State voting age population
dvph_StateVAP	= dvph*State voting age population
rph_StateVAP	= rph*State voting age population
rvph_StateVAP	= rvph*State voting age population
State_DVS_lag	State-wide Dem vote share, lagged one election
State_DVS_lag2	State_DVS_lag squared

Consider the following regression

$$DemoShare_{it} = \beta_0 + \beta_1 Turnout_{it} + u_t + u_{it}$$

where

- $\circ \ DemoShare_{it}$: Two-party vote share for Democrat candidate in county i in the presidential election in year t
- $\circ \; Turnout_{it}$: Turnout rate in county i in the presidential election in year t
- $\circ u_t$: Year fixed effects. Time dummies for each presidential election year
- As an IV, we use the rainfall measure denoted by DNormPrcp_KRIG

```
# You can do this, but it is tedious.
hg_ols <- lm_robust( DemVoteShare2 ~ Turnout + Yr52 + Yr56 + Yr60 + Yr64 + Yr68 + Yr72 + Yr76 + Yr80
                     + Yr84 + Yr88 + Yr92 + Yr96 + Yr2000, data = HGdata, se type="HC1")
#coeftest(hg ols, vcov = vcovHC, type = "HC1")
# By using "factor(Year)" as an explanatory variable, the regression automatically incorporates the
hg_ols <- lm_robust( DemVoteShare2 ~ Turnout + factor(Year) , data = HGdata, se_type="HC1")</pre>
#coeftest(hg ols, vcov = vcovHC, type = "HC1")
# Iv regression
hg ivreg <- iv robust( DemVoteShare2 ~ Turnout + factor(Year)
                    factor(Year) + DNormPrcp KRIG, data = HGdata, se type="HC1")
#coeftest(hg ivreg, vcov = vcovHC, type = "HC1")
# Show result
screenreg(l = list(hg_ols, hg_ivreg),
          digits = 3,
          # caption = 'title',
          custom.model.names = c("OLS", "IV"),
          custom.coef.names = NULL, # add a class, if you want to change the names of variables.
          include.ci = F,
          include.rsguared = FALSE, include.adjrs = TRUE, include.nobs = TRUE,
          include.pvalues = FALSE, include.df = FALSE, include.rmse = FALSE,
          custom.header = list("DemVoteShare2" = 1:2), # you can add header especially to indicate a
          stars = numeric(0)
```

##			
##	========	:=======	========
##		DemVot	eShare2
##			
##		OLS	IV
##			
##	(Intercept)	59.085	26.910
##		(0.560)	(11.024)
##	Turnout	-0.157	0.363
##		(0.008)	(0.178)
##			
##	Adj. R^2	0.280	0.130
##	Num. obs.	27401	27401
##	=========	========	========

```
## Linear hypothesis test
##
## Hypothesis:
## DNormPrcp_KRIG = 0
##
## Model 1: restricted model
## Model 2: Turnout ~ factor(Year) + DNormPrcp_KRIG
##
## Note: Coefficient covariance matrix supplied.
##
    Res.Df Df F Pr(>F)
##
## 1 27387
## 2 27386 1 44.029 3.296e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```