Panal Data 1: Framework

Instructor: Yuta Toyama

Last updated: 2021-07-09

Introduction

Introduction

－Panel data（パネルデータ）
－combination of crosssection（クロスセクション）and time series（時系列）data
－Examples：
1．Person i＇s income in year t ．
2．Vote share in county i for the presidential election year t ．
3．Country i＇s GDP in year t ．
－Panel data is useful
1．More variation（both cross－sectional and time series variation）
2．Can deal with time－invariant unobserved factors．

Course Plan

－Framework
－Implementation in R
－Difference－in－differences（DID，差の差分法）

Framework

Framework with Panel Data

- Consider the model

$$
y_{i t}=\beta^{\prime} x_{i t}+\epsilon_{i t}, E\left[\epsilon_{i t} \mid x_{i t}\right]=0
$$

where $x_{i t}$ is a k-dimensional vector

- If there is no correlation between $x_{i t}$ and $\epsilon_{i t}$, you can estimate the model by OLS (pooled OLS)
- A concern here is the omitted variable bias.

Introducing fixed effect（固定効果）

－Suppose that $\epsilon_{i t}$ is decomposed as

$$
\epsilon_{i t}=\alpha_{i}+u_{i t}
$$

where α_{i} is called unit fixed effect（固定効果），which is the time－invariant unobserved heterogeneity．
－With panel data，we can control for the unit fixed effects by incorporating the dummy variable for each unit i ！

$$
y_{i t}=\beta^{\prime} x_{i t}+\gamma_{2} D 2_{i}+\cdots+\gamma_{n} D n_{i}+u_{i t}
$$

where $D l_{i}$ takes 1 if $l=i$ ．

Fixed Effect Model

- Model

$$
y_{i t}=\beta^{\prime} x_{i t}+\alpha_{i}+u_{i t}
$$

- Assumptions:

1. $u_{i t}$ is uncorrelated with $\left(x_{i 1}, \cdots, x_{i T}\right)$, that is $E\left[u_{i t} \mid x_{i 1}, \cdots, x_{i T}\right]=0$
2. $\left(Y_{i t}, x_{i t}\right)$ are independent across individual i.
3. No outliers
4. No perfect multicollinarity between explantory variables $x_{i t}$ and fixed effects α_{i}.

Assumption 1: Mean independence

- Assumption 1 is weaker than the assumption in OLS.
- Here, the time-invariant unobserved factor is captured by the fixed effect α_{i}.

Assumption 4: No Perfect Multicolinearity

- Consider the following model

$$
\text { wage }_{i t}=\beta_{0}+\beta_{1} \text { experience }_{i t}+\beta_{2} \text { male }_{i}+\beta_{3} \text { white }_{i}+\alpha_{i}+u_{i t}
$$

- experience ${ }_{i t}$ measures how many years worker i has worked before at time t.
- Multicollinearity issue because of male $_{i}$ and $w h i t e_{i}$.
- Intuitively, we cannot estimate the coefficient β_{2} and β_{3} because those time-invariant variables are captured by the unit fixed effect α_{i}.

Estimation

Estimation with Fixed Effects

- Can estimate the model by adding dummy variables for each individual.
- least square dummy variables (LSDV) estimator.
- Computationally demanding with many cross-sectional units
- We often use the following within transformation.

Estimation by within transformation

- Define the new variable $\tilde{Y}_{i t}$ as

$$
\tilde{Y}_{i t}=Y_{i t}-\bar{Y}_{i}
$$

where $\bar{Y}_{i}=\frac{1}{T} \sum_{t=1}^{T} Y_{i t}$.

- Applying the within transformation, can eliminate the unit FE α_{i}

$$
\tilde{Y}_{i t}=\beta^{\prime} \tilde{X}_{i t}+\tilde{u}_{i t}
$$

- Apply the OLS estimator to the above equation!.

Importance of within variation in estimation

- The variation of the explanatory variable is key for precise estimation.
- Within transformation eliminates the time-invariant unobserved factor,
- a large source of endogeneity in many situations.
- But, within transformation also absorbs the variation of $X_{i t}$.
- Remember that

$$
\tilde{X}_{i t}=X_{i t}-\bar{X}_{i}
$$

- The transformed variable $\tilde{X}_{i t}$ has the variation over time t within unit i.
- If $X_{i t}$ is fixed over time within unit $i, \tilde{X}_{i t}=0$, so that no variation.

Various Fixed Effects

- You can also add time fixed effects (FE)

$$
y_{i t}=\beta^{\prime} x_{i t}+\alpha_{i}+\gamma_{t}+u_{i t}
$$

- The regression above controls for both time-invariant individual heterogeneity and (unobserved) aggregate year shock.
- Panel data is useful to capture various unobserved shock by including fixed effects.

Cluster－Robust Standard Errors

－In OLS，we considered two types of error structures：
1．Homoskedasticity $\operatorname{Var}\left(u_{i}\right)=\sigma^{2}$
2．Heteroskedasitcity $\operatorname{Var}\left(u_{i} \mid x_{i}\right)=\sigma\left(x_{i}\right)$
－They assume the independence between observations，that is $\operatorname{Cov}\left(u_{i}, u_{i^{\prime}}\right)=0$ ．
－In the panel data setting，we need to consider the autocorrelation（自己相関）．
－the correlation between $u_{i t}$ and $u_{i t^{\prime}}$ across periods for each individual i ．
－Cluster－robust standard error（クラスターに頑健な標準誤差）considers such autocorrelation．
－The cluster is unit i ．The errors within cluster are allowed to be correlated．

