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Introduction
Panel data (パネルデータ)

combination of crosssection (クロスセクション) and time series (時系列) data

Examples:
1. Person 's income in year .

2. Vote share in county  for the presidential election year .

3. Country 's GDP in year .

Panel data is useful
1. More variation (both cross-sectional and time series variation)

2. Can deal with time-invariant unobserved factors.
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Course Plan
Framework

Implementation in R

Difference-in-differences (DID, 差の差分法)
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Framework with Panel Data
Consider the model

where  is a k-dimensional vector

If there is no correlation between  and , you can estimate the model by OLS (pooled
OLS)

A concern here is the omitted variable bias.

yit = β ′xit + ϵit, E[ϵit|xit] = 0

xit

xit ϵit
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Introducing fixed effect (固定効果)

Suppose that  is decomposed as

where  is called unit fixed effect (固定効果), which is the time-invariant unobserved
heterogeneity.

With panel data, we can control for the unit fixed effects by incorporating the dummy
variable for each unit !

where  takes 1 if .

ϵit

ϵit = αi + uit

αi

i

yit = β ′xit + γ2D2i + ⋯ + γnDni + uit

Dli l = i
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Fixed Effect Model
Model

Assumptions:
1.  is uncorrelated with , that is 

2.  are independent across individual .

3. No outliers

4. No perfect multicollinarity between explantory variables  and fixed effects .

yit = β ′xit + αi + uit

uit (xi1, ⋯ , xiT ) E[uit|xi1, ⋯ , xiT ] = 0

(Yit, xit) i

xit αi
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Assumption 1: Mean independence
Assumption 1 is weaker than the assumption in OLS.

Here, the time-invariant unobserved factor is captured by the fixed effect .αi
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Assumption 4: No Perfect Multicolinearity
Consider the following model

 measures how many years worker  has worked before at time .

Multicollinearity issue because of  and .

Intuitively, we cannot estimate the coefficient  and  because those time-invariant
variables are captured by the unit fixed effect .

wageit = β0 + β1experienceit + β2malei + β3whitei + αi + uit

experienceit i t

malei whitei

β2 β3

αi
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Estimation
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Estimation with Fixed Effects
Can estimate the model by adding dummy variables for each individual.

least square dummy variables (LSDV) estimator.

Computationally demanding with many cross-sectional units

We often use the following within transformation.
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Estimation by within transformation
Define the new variable  as

where .

Applying the within transformation, can eliminate the unit FE 

Apply the OLS estimator to the above equation!.

~
Y it

~
Y it = Yit − Ȳ i

Ȳ i = ∑
T

t=1 Yit
1
T

αi

~
Y it = β ′ ~

Xit + ~uit
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Importance of within variation in estimation
The variation of the explanatory variable is key for precise estimation.

Within transformation eliminates the time-invariant unobserved factor,
a large source of endogeneity in many situations.

But, within transformation also absorbs the variation of .

Remember that

The transformed variable  has the variation over time  within unit .

If  is fixed over time within unit , , so that no variation.

Xit

~
Xit = Xit − X̄i

~
Xit t i

Xit i
~

Xit = 0
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Various Fixed Effects
You can also add time fixed effects (FE)

The regression above controls for both time-invariant individual heterogeneity and
(unobserved) aggregate year shock.

Panel data is useful to capture various unobserved shock by including fixed effects.

yit = β ′xit + αi + γt + uit
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Cluster-Robust Standard Errors
In OLS, we considered two types of error structures:

1. Homoskedasticity 

2. Heteroskedasitcity 

They assume the independence between observations, that is .

In the panel data setting, we need to consider the autocorrelation (自己相関).
the correlation between  and  across periods for each individual .

Cluster-robust standard error (クラスターに頑健な標準誤差) considers such
autocorrelation.

The cluster is unit . The errors within cluster are allowed to be correlated.

V ar(ui) = σ2

V ar(ui|xi) = σ(xi)

Cov(ui, ui′) = 0

uit uit′ i

i
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