Panal Data 1: Framework

Instructor: Yuta Toyama

Last updated: 2021-07-09

Introduction

Introduction

Panel data (パネルデータ)

○ combination of crosssection (クロスセクション) and time series (時系列) data

- Examples:
 - 1. Person i's income in year t.
 - 2. Vote share in county i for the presidential election year t.
 - 3. Country i's GDP in year t.
- Panel data is useful
 - 1. More variation (both cross-sectional and time series variation)
 - 2. Can deal with **time-invariant unobserved factors**.

Course Plan

- Framework
- Implementation in R
- Difference-in-differences (DID, 差の差分法)

Framework

Framework with Panel Data

• Consider the model

$$y_{it}=eta' x_{it}+\epsilon_{it}, E[\epsilon_{it}|x_{it}]=0$$

where x_{it} is a k-dimensional vector

- If there is no correlation between x_{it} and ϵ_{it} , you can estimate the model by OLS (pooled OLS)
- A concern here is the omitted variable bias.

Introducing fixed effect (固定効果)

• Suppose that ϵ_{it} is decomposed as

$$\epsilon_{it} = lpha_i + u_{it}$$

where α_i is called **unit fixed effect (固定効果)**, which is the time-invariant unobserved heterogeneity.

• With panel data, we can control for the unit fixed effects by incorporating the dummy variable for each unit i!

$$y_{it}=eta' x_{it}+\gamma_2 D2_i+\dots+\gamma_n Dn_i+u_{it}$$

where Dl_i takes 1 if l = i.

Fixed Effect Model

• Model

$$y_{it}=eta' x_{it}+lpha_i+u_{it}$$

- Assumptions:
 - 1. u_{it} is uncorrelated with (x_{i1},\cdots,x_{iT}) , that is $E[u_{it}|x_{i1},\cdots,x_{iT}]=0$

2. (Y_{it}, x_{it}) are independent across individual i.

- 3. No outliers
- 4. No perfect multicollinarity between explantory variables x_{it} and fixed effects α_i .

Assumption 1: Mean independence

- Assumption 1 is weaker than the assumption in OLS.
- Here, the time-invariant unobserved factor is captured by the fixed effect α_i .

Assumption 4: No Perfect Multicolinearity

• Consider the following model

 $wage_{it} = eta_0 + eta_1 experience_{it} + eta_2 male_i + eta_3 white_i + lpha_i + u_{it}$

 \circ *experience*_{it} measures how many years worker *i* has worked before at time *t*.

- Multicollinearity issue because of $male_i$ and $white_i$.
- Intuitively, we cannot estimate the coefficient β_2 and β_3 because those **time-invariant** variables are captured by the unit fixed effect α_i .

Estimation

Estimation with Fixed Effects

- Can estimate the model by adding dummy variables for each individual.
 - least square dummy variables (LSDV) estimator.
 - Computationally demanding with many cross-sectional units
- We often use the following **within transformation**.

Estimation by within transformation

• Define the new variable $ilde{Y}_{it}$ as

$${ ilde Y}_{it} = Y_{it} - {ar Y}_i$$

where $ar{Y}_i = rac{1}{T} \sum_{t=1}^T Y_{it}.$

• Applying the within transformation, can eliminate the unit FE $lpha_i$

$${ ilde Y}_{it}=eta' ilde X_{it}+ ilde u_{it}$$

• Apply the OLS estimator to the above equation!.

Importance of within variation in estimation

- The variation of the explanatory variable is key for precise estimation.
- Within transformation eliminates the time-invariant unobserved factor,
 a large source of endogeneity in many situations.
- But, within transformation also absorbs the variation of X_{it} .
- Remember that

$$ilde{X}_{it} = X_{it} - ar{X}_i$$

- $\circ~$ The transformed variable $ilde{X}_{it}$ has the variation over time t within unit i.
- $\circ \,$ If X_{it} is fixed over time within unit i, $ilde{X}_{it}=0$, so that no variation.

Various Fixed Effects

• You can also add time fixed effects (FE)

$$y_{it}=eta' x_{it}+lpha_i+\gamma_t+u_{it}$$

- The regression above controls for both **time-invariant individual heterogeneity** and **(unobserved) aggregate year shock**.
- Panel data is useful to capture various unobserved shock by including fixed effects.

Cluster-Robust Standard Errors

• In OLS, we considered two types of error structures: 1. Homoskedasticity $Var(u_i) = \sigma^2$

2. Heteroskedasitcity $Var(u_i|x_i) = \sigma(x_i)$

- They assume the independence between observations, that is $Cov(u_i, u_{i'}) = 0$.
- In the panel data setting, we need to consider the **autocorrelation** (自己相関). • the correlation between u_{it} and $u_{it'}$ across periods for each individual *i*.
- Cluster-robust standard error (クラスターに頑健な標準誤差) considers such autocorrelation.
 - \circ The cluster is unit *i*. The errors within cluster are allowed to be correlated.