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Abstract

This paper develops and estimates a dynamic structural model of emissions abatement,

investment, and permit trading with banking under cap-and-trade regulation. The model

accounts for forward-looking behavior and transaction costs in the permit market, which

determine the temporal and geographical distribution of emissions in equilibrium, and,

thus, the welfare implications of the regulation. The model is applied to the US Acid Rain

Program to evaluate the role of regulatory designs. Permit banking mitigates inefficiencies

arising from transaction costs and modifies the timing of emissions. An emissions tax

policy could achieve an outcome close to dynamic cap-and-trade without transaction

costs.
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1 Introduction

Designing the allocation mechanism for scarce public resources is a key issue in broad fields of

economics. This issue is particularly relevant in environmental economics because the optimal

allocation of natural resources depends on their externalities. Since the seminal work of

Coase (1960), economists have advocated a market-based allocation mechanism that utilizes

economic incentives to achieve efficient resource allocation. This idea has been adopted in

various settings, including fishery quota, spectrum license, water rights, and permits for air

pollutants. While the literature has focused on such mechanisms from a static perspective, it

has put less emphasis on dynamic aspects of the regulatory design and the agent’s behavior.1

This paper therefore provides an empirical study on the dynamic aspects of cap-and-trade

regulation, a canonical example of market-based resource allocation schemes.2

In cap-and-trade regulation, the regulator uses emissions permits, the tradable rights

for producing emissions, as a regulatory tool. Regulated firms can reallocate such permits

through trading so that they can achieve the target level of aggregate emissions in a flexible

and efficient manner. Cap-and-trade is now widely adopted in the air pollution regulations

of the United States and the European Union.

While the theoretical framework originally proposed by Coase (1960) was a static one, its

implementation in practice involves several dynamic aspects. First, a cap-and-trade program

spans multiple periods, during which the regulatory standard becomes stricter (i.e., the

emissions cap decreases). The regulator often allows for the inter-temporal reallocation of

emissions permits, which is referred to as a permit banking system. Considering the dynamic

nature of the regulatory framework, firms should make abatement decisions in a forward-

looking manner. Such dynamic consideration is particularly crucial when making investment

decision on abatement technology, which can be a major margin of emissions reduction.

Although these dynamic features prevail in many cap-and-trade programs, empirical studies

in the literature focus primarily on static decisions in the steady-state (see, e.g., Carlson,

Burtraw, Cropper, and Palmer 2000, Fowlie 2010b, and Chan 2015).

The goal of this study is to propose an empirical framework that evaluates the welfare

consequences of cap-and-trade programs by accounting for the dynamic nature of their

regulatory design and the forward-looking incentives of regulated firms. To do this, I develop

and estimate a new model of emissions abatement and permit market equilibrium in a

dynamic setting. I apply the model to evaluate the US Acid Rain Program, a federal

cap-and-trade program designed to reduce sulfur dioxide emissions from fossil-fuel power

plants. Through counterfactual simulations based on the estimated model, I examine the

consequences of the Acid Rain Program with an emphasis on the dynamic aspects of firms’

1A recent exception is Weyl and Zhang (2018), who study the tradeoff between allocative efficiency and
investment incentives in the property right design.

2Cap-and-trade regulation is also referred to as the emissions trading program. I use the term “cap-and-
trade” throughout the paper.
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behavior and regulatory design.

In a cap-and-trade program, regulated firms must surrender emissions permits to offset

their emissions. To meet this regulatory requirement, firms face a “make-or-buy” decision

problem: reduce emissions or trade (buy) permits. Dynamic incentives play a role in both

decisions. Investment in clean, but costly technology is an important margin for reducing

emissions. The trading of emissions permits is also a forward-looking decision because firms

can save (bank) emissions permits across periods.

Motivated by these considerations, I construct a dynamic equilibrium model in which

price-taking firms make decisions regarding the abatement of emissions and the trading (and

banking) of emissions permits. Equilibrium permit prices are determined by market clearing

conditions, which also determine how firms comply with the regulation in an equilibrium.

In addition, the model incorporates two important factors that determine how the market

mechanism affects the welfare effects of a cap-and-trade program.

First, the model allows for rich firm heterogeneity in terms of abatement costs and the

initial allocation of emissions permits. Given the firm heterogeneity in abatement cost,

the initial allocation of permits may not be the cost-effective allocation, i.e., the outcome

under which the total abatement cost is minimized to achieve a given level of emissions.

In such a scenario, the trading of permits might lead to a more cost-effective distribution

of emissions.3 Thus, it is crucial to incorporate firm heterogeneity when evaluating cap-

and-trade. However, allowing for heterogeneity in a dynamic equilibrium framework can be

computationally prohibitive. To circumvent this issue, I introduce a tractable framework for

estimation and policy simulations. In particular, following the literature on the estimation

of dynamic structural models (e.g., Aguirregabiria and Mira, 2010), my estimation approach

avoids the computation of dynamic competitive equilibrium in estimation.

Secondly, I incorporate the transaction costs of permit trading as a wedge in the permit

market. Given that no centralized trading exchanges exist for many cap-and-trade programs,

how well the permit market works is an empirical question. Transaction costs capture the

wedge between the market price and the firm-level shadow value of permits, which affects

abatement and trading decisions. The transaction costs also play an important role in

modeling dynamics. A theoretical study by Rubin (1996) shows that, without any frictions

in the permit market, all firms should have the same shadow value of permits that coincides

with the market price. Furthermore, the equilibrium permit price should increase in line

with the interest rate, which is known as the Hotelling rule. These predictions are relatively

strong in an empirical analysis. By including transaction costs, the shadow value of emissions

permits is determined by trading and banking decisions and is thus no longer constant across

firms.

Stavins (1995) is the first theoretical study to investigate how transaction costs discourage

3I also discuss the implication of trading in terms of the heterogeneity in environmental damages. This
point is particularly relevant to the SO2 emissions, which are known as non-uniformly mixed pollutant.
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permit trading and thereby lead to inefficient outcomes in a static setting. Concerns related

to transaction costs have been noted in practice. Previous studies document that many firms

tend not to trade emissions permits, and instead choose to comply with the regulation using

their allocated permits (see, e.g., Jaraitė-Kažukauskė and Kažukauskas, 2015 for the EU

Emissions Trading Scheme). In my empirical analysis, I introduce two types of transaction

costs: (1) a sunk cost associated with participation (entry) in the permit market, and (2)

variable costs that depend on the trading volume. I argue that these costs can be identified

from a firm’s optimal decisions and estimate these costs in my empirical analysis.

I apply my empirical framework to study the first nine years (1995–2003) of the US Acid

Rain Program, a cap-and-trade program for regulating sulfur dioxide (SO2) emissions in the

US electricity industry.4 The aim of the Acid Rain Program is to reduce the aggregate

SO2 emissions from coal power plants to half of their 1980 levels. The regulator distributed

emissions permits to existing generation facilities, and these facilities were required to surrender

sufficient permits to offset their emissions each year.5 Regulated sources could choose how

to comply with the regulation. For example, they could switch to cleaner coal, invest in

abatement equipment, or obtain additional permits from the market. Rich data on production

and abatement by power plants and the trading of emissions permits are available from this

program.

The Acid Rain Program is an interesting example of a cap-and-trade program in which

dynamic incentives play an important role in compliance decisions. While the regulation

started in 1995, the US EPA (i.e., regulator) announced the permit allocation schedule in

1990. The allocation is generous in the first five years of the regulation (1995–1999, referred

to as Phase I) but then decreases by almost half in the period after 2000 (Phase II). Casual

observation suggests that firms took this schedule into account. Specifically, regulated firms

saved a significant amount of permits in the first five years, and then started using them

once the cap became tighter after 2000. While this observation implies the importance of

banking in firms’ compliance strategies, some are concerned about the excessive banking of

permits (e.g., Smith, Platt, and Ellerman, 1998). In addition, the environmental and health

consequences of permit banking are ambiguous and have therefore proved controversial (e.g.,

Burtraw and Mansur (1999), Burtraw (2000), Ellerman, Joskow, and Harrison Jr (2003)).

My framework analyzes how such dynamic incentives affect firms’ compliance decisions and

the welfare consequences of the cap-and-trade program.

An econometric analysis poses a challenge in terms of computation. My model belongs

to a class of dynamic competitive equilibrium models with multiple heterogeneous firms. A

full solution approach (i.e., solving a dynamic competitive equilibrium for each evaluation

4I choose the terminal period of my analysis to be 2003 because of the proposal of the Clean Air Interstate
Rule in December 2003, which had a major impact on the regulatory environment for SO2 emissions. See
Section 2.2 for details.

5Emissions permits are called emissions “allowances” in the Acid Rain Program because the term “permit”
has another meaning in US environmental law. Because “permit” is the standard terminology in the economics
literature, I use the term “permit” in this paper.
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of the model parameters) is computationally prohibitive. To circumvent the computation

costs, I use the observed permit prices as a sequence of equilibrium prices, instead of solving

equilibrium permit prices in the evaluation of the objective function. This trick is similar in

spirit to the two-step estimators in dynamic Markov games (e.g., Aguirregabiria and Mira,

2007). Because each heterogeneous firm faces a different optimization problem, this approach

significantly reduces the computation costs.6

In estimation, I first use rich data on coal purchases at the plant level to construct the

hedonic function of fuel price, thus providing the marginal abatement cost via the purchase of

cleaner coal. I also use the detailed information on production and the engineering estimate

of the scrubber, allowing me to obtain the per-period cost function and the investment cost.

These primitives are embedded into the dynamic decision problem to estimate other model

primitives, including the transaction cost function. The estimates imply that the variable

transaction costs from permit trading are substantial. The median of the marginal transaction

cost is estimated to be $32.1, whereas the permit prices range between $100 and $200 in the

sample period. This result suggests that the dispersion of the shadow value of emissions

across firms is large and thus the distribution of emissions may not be efficient.

Using the estimated model, I conduct counterfactual simulations to investigate the welfare

consequences of the regulation. The welfare outcomes that I focus on include abatement

costs (i.e., fuel costs and investment costs) and health and environmental damages. While

the abatement cost serves as a primary measure in the evaluation of the cap-and-trade in the

literature, the health and environmental damages are particularly relevant in this context.

First, SO2 emissions are known as non-uniformly mixed pollution; health and environmental

damages depend on the location of the source of emissions. Thus, the geographic distribution

of emissions matters in terms of welfare. In addition, permit banking has an ambiguous

influence on health and environmental outcomes. Permit banking leads to earlier abatement

and thus greater benefits in the early period, though emissions would be larger in later periods.

My framework can analyze the net-benefit of the policy. To quantify the net-benefit, I use

estimates of health and environmental damages from the APEEP model provided by Muller

and Mendelsohn (2009b).

I conducted three counterfactual simulations. In my first counterfactual experiment, I

examine the effect of eliminating all transaction costs. This simulation quantifies the outcome

with the lowest abatement costs under the cap-and-trade. While previous works, including

Carlson, Burtraw, Cropper, and Palmer (2000) and Gollop and Roberts (1985), conduct a

similar exercise using a static framework, this paper analyzes the implications of transaction

costs on dynamic decisions such as abatement investment and permit banking.7 I find that

6The two-step approach used to estimate single-agent dynamic models (e.g., Hotz and Miller 1993;
Aguirregabiria and Mira 2002) is not suitable in my setting because firms are heterogeneous in many
dimensions, such as permit allocation, characteristics of power plants, and fuel costs. Given that the optimal
decisions depend on these factors, estimating policy functions from the data in a flexible way is quite difficult
due to the curse of dimensionality.

7Carlson, Burtraw, Cropper, and Palmer (2000) and Gollop and Roberts (1985) quantify the abatement

5



eliminating the transaction costs would lead to a more dispersed distribution of emissions,

reflecting more active trading of emissions permits. The total production and abatement

costs would decrease by $814 million in total in the cost-effective outcome, implying that

“unrealized” gains from trade are significant in the sample period.

The health and environmental damage, meanwhile, decreases by $2.4 billion without

transaction costs. This decrease is due to the change in the inter-temporal and cross-sectional

(i.e., geographic) distribution of emissions. The former refers to the shift in the timing of

emissions. Without the transaction costs, firms bank more permits in Phase I and use

them in Phase II, implying the lower (higher) emissions in Phase I (Phase II). Overall, the

discounted value of the total damages decreases. In addition, the geographic distribution of

SO2 emissions would change in the absence of transaction costs. Since the damage from SO2

emissions differs across locations (Muller & Mendelsohn, 2009b), the total damage would also

change. The primary cause of the greater aggregate damage is the change in the geographic

distribution of emissions (i.e., emissions decrease in the region where the damage is greater).

In the second counterfactual simulation, I investigate the impacts of permit banking. I

simulate the equilibrium outcome of cap-and-trade when permit banking between Phase I and

II is not allowed while fixing the transaction cost as estimated. I find that permit banking

reduces the total production and abatement cost by $325 million. These results suggest that

permit banking mitigates the negative effect of transaction costs on abatement costs. In

terms of the benefits of emissions abatement, the total damage of SO2 emissions decreases

because the total emissions in Phase I falls, leading to the lower discounted value of health

and environmental damages.

Lastly, I simulate emissions tax policy as an alternative to the cap-and-trade program. I

set the constant emissions tax rate that achieves the same aggregate amount of emissions.

Interestingly, the cost-effectiveness of the simple emissions tax policy is relatively close to

that of the cap-and-trade without transaction costs. Under the emissions tax policy, all firms

face the same shadow value of emissions in the cross-sectional sense, which is equivalent to

eliminating the transaction costs in the cap-and-trade. The difference between these two

outcomes is due to the inter-temporal smoothing of abatement costs. This finding may seem

to suggest that the contribution of permit banking to cost-effectiveness is limited. However,

as I discussed in the previous paragraph, the permit banking improves the cost-effectiveness

significantly when transaction costs exist. My interpretation of these findings is that the

permit banking system can be particularly effective in mitigating the negative impact of

transaction costs in cap-and-trade regulation.

The paper proceeds as follows. I begin by briefly reviewing the related literature. Section

2 then outlines the institutional background of the Acid Rain Program and provides a

descriptive analysis of the data. Motivated by the descriptive findings, I introduce the

pattern when the marginal abatement costs of emissions are equalized across coal power plants. Without
transaction costs, all firms would face the same shadow value of emissions given by the market price of
permits, and thus the marginal abatement costs should be equalized across firms.
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model in Section 3. I then present the estimation methodologies and the estimates of model

primitives in Section 4. Section 5 presents the counterfactual experiments, through which I

evaluate the consequences of the Acid Rain Program. Section 6 discusses several caveats and

possible extensions of the paper, and, finally, Section 7 provides a conclusion.

Related Literature The study is related to three strands of literature. First, it contributes

to the empirical literature on dynamic structural models in industrial organization (see, e.g.,

Bajari, Benkard, and Levin, 2007, Ryan, 2012, Collard-Wexler, 2013, and Kalouptsidi, 2014

in an oligopolistic setting, and Rust, 1987 and Aguirregabiria and Mira, 2002 in a single-agent

setting). The empirical setting employed here is unique in that the investment in technology

is substitutable with other production inputs, namely emissions permits. With frictions in

the permit market, firms’ decisions are cast as a make-or-buy problem in a dynamic setting.

Although my model is tailored to cap-and-trade regulation, it can be used to analyze firms’

dynamic incentives when they are subject to frictions or imperfections in input markets.

Methodologically, my paper relates to the structural estimation of dynamic equilibrium

models in which aggregate outcomes (e.g., permit prices in my application) are endogenously

determined in equilibrium (see, e.g, Lee, 2005; Lee and Wolpin, 2006; Gillingham, Iskhakov,

Munk-Nielsen, Rust, and Schjerning, 2015, 2019).

Second, my study is related to the empirical literature on cap-and-trade programs. While

much of this literature tests the qualitative predictions of models of permit trading, a few

recent works adopt a structural approach to measure the welfare implications of cap-and-

trade programs (Fowlie 2010b, Ryan 2012, Fowlie, Reguant, and Ryan 2016, and Dardati

2016).8 A distinctive feature of my paper is to model trading and banking decisions in a

nonstationary dynamic equilibrium framework. Existing studies assume frictionless permit

markets and a stationary regulatory setting. In such a setting, cap-and-trade is equivalent

to imposing a Pigouvian tax. My model describes how firms make decisions regarding

investment, trading, and banking when transaction costs exist and the regulatory standard

(i.e., the permit allocation) changes over time. My framework can be used to study how the

regulatory design of permit trading, such as the availability of permit banking and alternative

allocation rules for emissions permits, affects firms’ abatement decisions.

In contemporaneous work, Chen (2018) structurally estimates firms’ beliefs regarding

future permit prices using a single-agent dynamic model of emissions abatement and permit

trading in the context of the Acid Rain Program. Although my paper and that of Chen

(2018) are similar in terms of their empirical setting and modeling approach, they address

different research questions and consequently take a different approach to model permit

prices. On the one hand, Chen (2018) estimates flexible beliefs regarding future permit

prices without imposing any equilibrium restrictions. The framework can demonstrate the

8The literature has examined the independence of outcomes from the initial allocation (Reguant and
Ellerman, 2008 and Fowlie and Perloff, 2013) and the internalization of emissions costs (Kolstad and Wolak,
2008, Fowlie, 2010a, and Fabra and Reguant, 2014).
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discrepancy between the estimated beliefs and the one implied by rational expectations. On

the other hand, my study provides a dynamic equilibrium framework in which permit prices

are determined endogenously. The framework can conduct various policy simulations to

evaluate the program and counterfactual regulatory designs, which is the primary purpose of

my paper.

Finally, my study provides new insights for the evaluation of the Acid Rain Program

by studying the inter-temporal aspects of abatement decisions and the regulatory design.

One approach adopted in the literature is to calculate the cost saving that results from

permit trading by estimating a cost function and a discrete choice model for abatement

choices (see, e.g., Ellerman, Joskow, Schmalensee, Montero, and Bailey, 2000, Carlson,

Burtraw, Cropper, and Palmer, 2000, Keohane, 2006, and Chan, 2015). Researchers found

that adopting a permit trading program led to significant cost savings as compared with

traditional command-and-control approaches, although the actual cost did not reach the

least-cost solution. Another approach analyzes aggregate variables to discuss the efficiency

of the permit market (Joskow, Schmalensee, and Bailey 1998, Helfand, Moore, and Liu 2006,

and Ellerman and Montero 2007).9 This study complements previous research by empirically

examining the dynamic aspects of compliance and abatement decisions under a cap-and-

trade program. In particular, this study is one of the first to quantify the role of the permit

banking system.10 For this purpose, I construct and estimate an equilibrium model of the

cap-and-trade program that enables me to simulate the outcome when permit banking is not

allowed.

2 Empirical Setting and Descriptive Analysis

2.1 The Acid Rain Program

Fossil-fuel electricity plants, especially coal-fired plants, produce sulfur dioxide (SO2) emissions

as a byproduct of electricity generation. SO2 is known to have detrimental effects on human

health and the environment. Although the federal government introduced command-and-

control-type regulations in the Clean Air Act Amendments of 1970, such regulations have

not been effective in reducing SO2 emissions.11 The failure of the previous regulations led to

the introduction of the Acid Rain Program (ARP) as part of Title IV of the 1990 Clean Air

9Joskow, Schmalensee, and Bailey (1998) find that prices in the spot market and the EPA auction are very
similar, concluding that “a relatively efficient private market” had developed by mid-1994. Helfand, Moore,
and Liu (2006) use monthly permit prices for the period 1994 to 2003 to test whether the price path follows the
Hotelling r−percent rule for inter-temporal arbitrage. They reject the Hotelling rule, which suggests there is
inefficiency in the market. Ellerman and Montero (2007) argue for an efficient market of permits by comparing
the actual and theoretically predicted volume of aggregate banking.

10Previous studies (e.g., Ellerman, Joskow, Schmalensee, Montero, and Bailey, 2000) note the importance
of permit banking as a source of cost-effectiveness in cap-and-trade. Arimura (2001) conducts numerical
simulation to quantify the cost savings brought about by permit banking in a frictionless setting.

11Ellerman, Joskow, Schmalensee, Montero, and Bailey (2000) provide a brief history of the regulation on
SO2 emissions.
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Act Amendments.

The ARP is a cap-and-trade program for SO2 emissions that began in 1995. The aim

of the regulation is to regulate SO2 emissions from electricity generating units (EGUs) that

use fossil fuels and have an output capacity greater than 25 megawatts. The regulation was

implemented in two phases. In Phase I (1995–1999), a subset of eligible EGUs fell under the

regulation. These units included 263 EGUs, called the “Table 1” group, that were notably

dirty (i.e., they produced a large amount of emissions) and old before the regulation, as

well as an additional 182 EGUs from the Non-Table 1 group to serve as substitution or

compensating units. In Phase II (begun in 2000), all eligible EGUs were mandated to comply

with the regulation.

The ARP aims to reduce SO2 emissions from generation facilities to half of their 1980

levels, based on which the total number of emissions permits is determined each year. Most

emissions permits are allocated for free to existing units. The EPA adopts a rule that

determines the unit-level allocation of emissions permits based on the characteristics of a

unit.12 The allocation is determined primarily by the average heat input during the period

1985–1987 and the target emissions rate of fuel (i.e., emissions per fuel input) for each phase.

Specifically, the target emissions rate of fuel for Phase I is 2.5 pounds (lbs) per 1 million

British thermal unit (MMBtu), and the rate for Phase II is 1.2 lb/MMBtu. Some units

are allocated additional permits based on technical and political considerations (Joskow &

Schmalensee, 1998). It is worth emphasizing that the provisions in the 1990 legislation include

detailed rules for permit allocations. Thus, generation facilities were aware of the schedule

of permit allocation before the program started in 1995.

Under the ARP, emissions permits are tradable among participants. Firms can sell or

buy permits with other firms, including financial companies or brokers that do not own any

generating units. Although the EPA also holds an annual auction to distribute around 2.7%

of the yearly allocation, a centralized trading exchange does not exist. Bilateral trading,

which is often mediated by brokers, is the primary means to trade emissions permits with

other participants.

The operation of each regulated unit, especially emissions levels of SO2, is recorded

through the Continuous Emissions Monitoring System.13 At the end of each calendar year,

the annual level of SO2 emissions is finalized, and each regulated unit is required to surrender

emissions permits within a grace period of 60 days.14 One unit of emissions permit is needed

to offset one ton of SO2 emissions. The remaining permits are carried over to the next year,

12The unit-level allocation depends only on past information, and there is no update on the permit allocation
based on actual output or emissions. See U.S. Environmental Protection Agency (1993b, 1993a) for the details.

13There should be no concern about manipulating the measurement of emissions because the operators are
required to perform periodic performance evaluations of the monitoring system. See U.S. Environmental
Protection Agency (2009) for the details.

14If an affected unit does not hold sufficient permits to offset the emissions at the end of the compliance
deadline, unit operators are required to pay a penalty of USD 2000 per SO2 ton. However, compliance was
nearly 100% during the period of my analysis.
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referred to as the banking of emissions permits. There is no expiration date for banked

permits. As I discuss in Section 2.3, regulated firms banked a significant number of permits

in Phase I, when the annual allocation was more generous than it was in Phase II.

Although existing units obtained their initial allocation of permits with no charge, most

of them still needed to reduce their emissions in order to comply with the regulation.

The regulated units were able to reduce emissions by reducing their utilization (output)

or reducing their emissions per input (emissions rate of fuel).15 The latter option of reducing

the emissions rate of fuel was the primary margin of abatement, as I will explain in Section

2.3.2.

2.2 Data Sources

This subsection describes the data sources used for this study. I combine the transaction

data of emissions permits and various data on electricity generation and emissions abatement.

The study focuses on the period between 1995 and 2003. Although the ARP continued after

2004, the proposal of the Clean Air Interstate Rule, announced in December 2003, had a

large impact on regulated firms’ expectations over the future regulatory environment.16 The

proposed regulation aimed to strengthen the stringency of the SO2 regulations from 2010

within the framework of the ARP. After the announcement, the permit price started to rise

dramatically, primarily because the value of emissions permits issued before 2010 would be

higher than those issued after 2010, according to the proposed regulation.17 Firms also

started to invest in scrubbers in anticipation of a stricter regulation.18 Thus, I do not include

data after 2004, focusing instead on those periods when the regulatory environment for SO2

emissions was stable.19

The data on permit transactions are taken from the Allowance Tracking System (ATS)

provided by U.S. Environmental Protection Agency (1993–2013a). The EPA operates the

ATS to manage permit allocations and to track private transactions and the surrendering of

permits for compliance. The ATS data are available to the public. Each transaction record

in the tracking system contains the account names of a transferor and a transferee, vintage

of permits, quantity of transferred permits, and confirmation date of the transaction.20 I

15The ratio of output to input is the design parameter for generating units. Therefore, firms are not able
to increase this aspect (i.e., improve fuel efficiency) to reduce emissions.

16The announcement was made by the EPA on December 17, 2013. The newly proposed rule was referred
to as the Interstate Air Quality Rule (U.S. Environmental Protection Agency, 2003).

17See Federal Register (2004) for the details of the Clean Air Interstate Rule.
18See Schmalensee and Stavins (2013) for a detailed review on how the regulatory environment for SO2

emissions has changed since 2004.
19One might be concerned that the regulator (i.e., the EPA) is able to modify the regulation at will, leading

to regulatory uncertainty. However, the EPA does not have the authority to modify the regulatory rules of
the Acid Rain Program, such as tightening the overall cap or changing the permit allocation. To do these,
new legislation would need to be passed by the Congress.

20The confirmation date must lag behind the actual transaction date to some extent, although the prompt
recording of private trading was considered the rule rather than the exception, according to EPA staff and
industry experts. See Joskow, Schmalensee, and Bailey 1998 for details.
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constructed the transaction data at the firm and year levels from the database.21 Specifically, I

aggregated the account-level data into firm-level data using ownership information constructed

by various sources, including the eGrid database (U.S. Environmental Protection Agency,

1996-2010) and EIA-860 (Energy Information Administration, 1990-2013). The final data set

includes (1) permit holding at the beginning of the year, (2) annual allocation, (3) volume of

permit trading (net purchase of emissions permits), and (4) banking volume.22

The ATS does not collect information on transaction prices. I therefore use the market-

price index of SO2 permits provided by Cantor Fitzgerald, one of the major brokers in the

SO2 permit market (BGC Environmental Brokerage Services, 2011).23 The frequency of the

price data is monthly.

Regarding production and emissions information, I compiled data from various sources

including the EPA and the US Energy Information Administration (EIA). The EPA makes

publicly available the unit-level operation data of the generating units, collected by the

Continuous Emissions Monitoring System (CEMS). The CEMS data include gross generation

(in MWh), heat input (in MMBtu), and SO2 emissions (U.S. Environmental Protection

Agency (1993–2013b)). In addition, the EIA conducts various surveys on the operation of

power plants. Specifically, the Form EIA-767 “Steam-Electric Plant Operation and Design

Report” (Energy Information Administration (1985–2005)) provides information on fuel usage

(sulfur content, ash content, heat inputs), net generation, and generation capacity at the unit

and monthly level. In addition, the Form FERC No. 423 (EIA-423) “Monthly Report of Cost

and Quality of Fuels for Electric Plants” (Energy Information Administration (1990–2003))

provides plant-level and monthly-level information on fuel procurement, including fuel type,

sulfur content, heat content, and purchase costs.

2.3 Descriptive Analysis

In this subsection, I provide a descriptive analysis of the data. I highlight various aspects of

the ARP, including the banking of emissions permits, the abatement behavior of regulated

sources, and the market for emissions permits. These descriptive findings provide the motivation

for the modeling approach introduced in Section 3.

21Note that permit transactions between power plants (or generating units) within the same firm are
considered to be reallocation of permits within a firm. The trading of emissions permits is defined as a
transaction with another firm or broker.

22Emissions allowances issued under the Acid Rain Program have a vintage, that is, the year that the
allowance was issued. Firms can use a permit with a vintage that is either current or older (i.e., permit
banking) for compliance purposes. In principle, firms can trade the emissions permits of future vintages,
although the trading volume for such permits is relatively small. Therefore, I focus on the trading of permits
with a current or old vintage and construct a data set from these transactions.

23Cantor Fitzgerald was acquired by BGC Partners, L.P. in 2011 and became BGC Environmental Brokerage
Services, L.P.

11



2.3.1 Banking of Emissions Permits

Figure 1 shows the aggregate SO2 emissions level and emissions caps under the ARP from 1990

to 2003. The bars indicate the aggregate emissions each year, while the dashed lines represent

the emission caps, which are equal to the total amount of emissions permits allocated by the

EPA in that year. As mentioned in Section 2, the timing of the regulation varied across

EGUs. I denote those units regulated since 1995 as Group I units, and those regulated since

2000 as Group II units. The blue bar in the figure corresponds to the emissions of Group I

units, and the orange bar corresponds to those of Group II units. The blue dashed line shows

the allocation for Group I units, and the black dashed line from 2000 shows the total cap of

emissions, including both Group I and II units.

The figure demonstrates that once Phase I started in 1995, Group I units reduced their

emissions by almost half compared with their 1990 levels. The emissions before 1999 were

significantly lower than the emissions cap, implying that those units bank their permits.

While both Group I and II units reduced their emissions further in 2000 (i.e., the first year

of Phase II), Group I units did not reduce their emissions to the same extent as they did in

1995. They began using the banked permits to ensure compliance. Given that the regulator

had already announced the allocation schedule in 1990, Figure 1 suggests that regulated

firms behaved in a forward-looking manner. This observation motivates the use of a dynamic

structural model in my analysis.

Figure 1: Aggregate Volume of SO2 Emissions and Caps (1990–2003)
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Notes: The blue (orange) bar corresponds to emissions from Group I (Group II) units. The
blue dashed line indicates the permit allocation for Group I units, while the black dashed
line (from 2000) shows the total cap, including the allocations for both Group I and II units.
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2.3.2 Abatement Strategy for Coal Units

Emissions from electricity generation can be reduced either by (1) reducing output or by (2)

reducing the emissions rate of fuel (i.e., emissions per input).24 However, the former strategy

was not a major option for coal units regulated under the Acid Rain Program. To demonstrate

this, in Appendix A.1, I estimate the effect of the regulation on the output (utilization rate)

of EGUs in a difference-in-differences (DID) framework by exploiting the variation of the

timing of the regulation across units. I found that the utilization rate decreased by only

0.6–3.8 percentage points after the introduction of the Acid Rain Program. In addition, I

examined whether the regulated firms retired coal units, a potential option for emissions

abatement. The data show that this margin is small. Among the 263 EGUs in the “Table 1”

group, only seven units retired before 1995, and two additional units retired before 2003. Of

the other coal units, around 6% of EGUs retired between 1990 and 2003. In this subsection, I

explain the abatement strategy of adjusting the emissions rate of fuel of EGUs whose primary

fuel type is coal.25

Two common options are available to reduce the emissions rate of fuel for coal units.

The first is called fuel switching. An operator of coal units can switch the type of coal from

dirty (e.g., high-sulfur bituminous coal) to cleaner (e.g., subbituminous coal or low-sulfur

bituminous coal). The fuel costs of cleaner coal are higher than those of dirty coal. In

addition, switching fuel types requires retrofitting the boiler to make it compatible with the

new type of coal, which incurs a fixed cost. Another abatement option is to install flue-

gas desulfurization equipment (a scrubber). This equipment is installed at the stack of a

generation unit and eliminates more than 80% of SO2 emissions. However, this option incurs

a large investment cost, as well as a long lead time (two to three years, on average).

Figure 2 shows the distribution of the unit-level SO2 emissions rate of fuel (measured

in pounds per MMBtu) for each group. The left panel shows the distribution for Group I

sources. The emissions rates of fuel for these sources fell between 1990 and 1995, the beginning

of Phase I. The rates then stayed almost constant during Phase I, before falling further in

1999 in anticipation of the beginning of Phase II. The emissions rates of fuel for generating

units in Group II did not change until 1999, but then decreased in 2000, the first year of the

cap-and-trade program for these units. These observations imply that firms adjusted their

emissions rate of fuel at the beginning of each phase, but that the rate then remained almost

constant within the phase.

Another important finding to be gleaned from Figure 2 is the flexibility of the compliance

patterns. The red horizontal lines indicate the target emissions rates of fuel in each phase.

Conditional on the level of heat input (i.e., the average heat input during the period 1985–

1987) that is used to calculate the initial allocation of permits, generating units would need

24The ratio of output to input is a fixed design parameter of generating units. Thus, firms cannot improve
their fuel efficiency as a way to reduce emissions.

25Although the target of the ARP includes all types of fossil fuel units (coal, gas, and oil), SO2 emissions
from gas and oil units are quite small. In the analysis I treat these emissions as exogenous.
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to achieve this target rate if they did not trade emissions permits with other units. The figure

indicates that some units achieved a greater emissions reduction than necessary, while others

did not reduce their emissions rates and therefore needed to secure additional permits. This

implies that the trading of permits played an important role in compliance decisions.

Figure 2: Distribution of Unit-level SO2 Emissions Rate of Fuel
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Notes: The blue dots show the weighted average of emissions rates of fuel. The upper (lower)
bars correspond to the 10th (90th) percentile of the distribution.

2.3.3 Heterogeneity of Regulated Firms

The heterogeneity of regulated firms is a key factor in the evaluation of a cap-and-trade

program, as this is the source of the gains from trade: firms with higher (lower) costs of

abatement can buy (sell) emission permits by trading with other firms. As a result, the

pattern of emissions is more cost-effective than that in an autarky, where no emissions permits

are traded.26

Table 1 shows the descriptive statistics for the characteristics of the regulated firms. The

table shows that regulated firms differ substantially in terms of firm size (measured by the

number of regulated units and the total capacity of those units), the share of generating units

with a scrubber. These factors affect the firms’ abatement and trading decisions. For example,

plants that did not have a scrubber needed to make more effort to comply, either by reducing

their emissions or by buying permits. Firms with a higher initial allocation, conditional on

other factors being fixed, are more likely to be sellers of permits in the market. The model

introduced in Section 3 incorporates the observed heterogeneity across firms.

26Given the heterogeneous environmental damages caused by SO2 emissions (Muller and Mendelsohn,
2009b), the implication of permit trading on the net-benefit of the program is an empirical question. I
investigate this point in simulation analysis in Section 5 .
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Table 1: Firm Heterogeneity

N Mean St. Dev. 25 Percentile Median 75 Percentile

# of Coal units in Group 1 138 2.43 4.76 0 0 3
# of Coal units in Group 2 138 3.86 5.38 1 2 5
# of Gas and Oil units 138 5.40 7.44 0 2.5 7.8
Total Capacity of Coal units in Group 1 138 701.72 1,614.71 0 0 800
Total Capacity of Coal units in Group 2 138 1,124.80 1,616.05 51.8 515.5 1,550.8
Share of Scrubbed Units in Group 1 in 1990 50 0.07 0.20 0.00 0.00 0.00
Share of Scrubbed Units in Group 2 in 1990 119 0.27 0.39 0.00 0.00 0.51
Firm size 138 2,295.60 2,882.71 400.8 1,242 3,358.2
Firm size: Owning Group 1 50 3,111.69 3,313.77 1,039.25 2,117.50 3,738.50
Firm size: Owning only Group 2 88 1,831.91 2,510.17 97.00 663.00 2,894.00
Initial Allocation 138 56,054.51 85,132.48 8,049.67 28,147.62 66,920.44

Notes: There are 138 firms in the sample. The unit for generation capacity is megawatts.
The unit for initial allocation is one emissions permit, which is required to offset one ton of
SO2 emissions.

2.3.4 Firm-level Trading Information

This subsection investigates the trading pattern of emissions permits. The U.S. Environmental

Protection Agency (2004) reports that transactions of emissions permits between related

entities (i.e., power plants and generating facilities under the same ownership) have been

active since the beginning of the program. Therefore, I focus on trading with other firms

(e.g., other affected firms and financial brokers) in the market.

Figure 3 reports the trading pattern at the firm-level. Specifically, the left panel shows

the unconditional probability of a market transaction at the firm-year level, and the right

panel shows the trading experience in the sample period at the firm level. Overall, the panels

implies the positive correlation between the trading decisions in the permit market and firm

size, measured by the sum of the nameplate capacity of units under the ARP.

Furthermore, the left panel shows that firms did not necessarily trade every year. The

unconditional probability of conducting permit trading was 73%. The trading probability

was positively correlated with firm size. This observation is also found in the context of

the EU–ETS scheme (see, e.g., Jaraitė-Kažukauskė and Kažukauskas, 2015). Although this

finding can be interpreted as suggestive evidence of fixed transaction costs, it should be noted

that firms do not need to conduct a transaction in every period, as they can bank emissions

permits. In the right panel, meanwhile, I show the firm-level experience of market trading

during the sample period. As can be seen, 91% of firms had at least one experience of trading

with another firm in the sample period, although some firms, most of which were small, did

not trade at all.27

27In the Online Appendix, I have added figures regarding trading patterns. Figure A5 shows the aggregate
volume of trading over time, while Figure A7 shows the frequency of trading normalized by the firm size.
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Figure 3: Trading Pattern at Firm Level
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2.3.5 Price of Emissions Permits

As discussed in Section 2.1, there are no centralized trading exchanges for emissions permits

under the Acid Rain Program. Although regulated firms must conduct bilateral trade

with other firms, brokers act as intermediaries for these transactions. Brokers also provide

information about permit prices. Figure 4 shows the price information provided by Cantor

Fitzgerald, a major broker in this market. I use the monthly SO2 price index as a price

measure. Cantor Fitzgerald constructs the index using various trading data, including

allowance bids (to buy), allowance offers (to sell), and actual trade prices, and publishes

it on the company website every month. I aggregate the monthly price index by taking the

volume-weighted mean for each year.28 Note that the price is normalized to the 2000 level

using the producer price index (U.S. Bureau of Labor Statistics, 1984–2015).

The price at the beginning was around $150, falling to below $100 in 1996 and 1997. It

then rose to $200 in 1999, before fluctuating in the range $120–$200 after 2000. The figure

suggests that the market price reflects the presence of permit banking. In the absence of

permit banking, I would expect to see a spike in the permit price at the beginning of Phase

II because the regulatory intensity in Phase II is much stricter. Such a patter is not found

in Figure 4. 29

28Figure A6 in the Online Appendix presents the comparison of the volume-weighted mean and (unweighted)
median prices. These two measures are quite close to each other.

29A key theoretical prediction regarding permit prices is the Hotelling rule: Permit prices should increase
with the risk-free interest rate if the market is efficient and there are no transaction costs. Helfand, Moore,
and Liu (2006) test the Hotelling rule using monthly prices of emissions permits for the same period. They
reject the rule after controlling for structural changes and market shocks.
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Figure 4: Price of Emissions Permits by a Broker
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Notes: Prices are normalized to January 2000 prices using the producer price index. The
prices are the weighted mean across months in each year. The weight is the aggregate trading
volume of permits.

3 Model

3.1 Overview of the Model

This section introduces a model of abatement and trading decisions and permit market

equilibrium under the cap-and-trade program. The model incorporates the institutional

features and descriptive findings in the previous section, including the non-stationary nature

of the regulations (i.e., the changing permit allocations), dynamic decisions on permit banking

and investment, frictions in permit trading, and firm heterogeneity.

The unit of decision maker is a firm (or equivalently a utility company in this context)

indexed by i = 1, . . . , N . A firm owns multiple power plants, each of which may hold multiple

generating units that are regulated by the Acid Rain Program. Firm i owns Jit units of the

regulated generating units, each of which is indexed by j.

The model is set as a nonstationary and finite-horizon model. Each discrete decision

period corresponds to one compliance year. Time is indexed by t = 1995, . . . , 2003(≡ T ).

Firms have a common discount factor of β ∈ (0, 1).

Figure 5 provides an overview of the firm-level decision problem. It has two building

blocks: (i) investment in a scrubber at the beginning of each phase (1995 and 2000), and (ii)

decisions regarding coal quality (emissions rate of fuel), permit trading, and permit banking

in each year. Note that I do not model the entry/exit decision of generating units because the

exit of coal generating units was limited in my sample period, as discussed at the beginning

of Section 2.3.2.30

At the beginning of each phase (i.e., 1995 and 2000), a firm makes a decision regarding

30See also Section 3.8 for a further discussion.
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scrubber investment that determines the removal rate of scrubber αli ∈ [0, 1] in Phase l ∈
{1, 2}. The removal rate is assumed to be fixed within each phase. I will discuss this in

greater detail in Section 3.5.

Given the scrubber investment in each phase, firm i makes decisions on coal quality,

permit trading, and banking. The timeline of decisions in each period is as follows:

1. Firm i holds permits that are carried over from the previous period, denoted by hit. A

firm also receives an annual allocation of permits, denoted by ait.

2. Participation decision: Denote firm i’s experience of market trading by Iit; i.e., Iit = 1

if a firm has experience in market trading and 0 otherwise. If Iit = 0, a firm can pay

the one-time sunk cost Fit to participate.

3. A firm chooses (1) the emissions rate of fuel Rjt for each generating unit j = 1, · · · , Jit,
(2) the net volume of trading bit if a firm is already participating in the market, and (3)

the banking of permits hi,t+1. When determining the net-purchase of emissions permits

bit, each firm is a price-taker and treats the market price of emissions permits Pt as

given.

4. A firm obtains profits from electricity generation and pays the costs of permits (or

obtains the revenue from selling permits).

5. Move to the next period with permit holding hi,t+1.

To formally define the optimization problem, I first specify in Section 3.2 the gross-profit from

electricity production and associated SO2 emissions. Section 3.3 introduces permit trading.

These two components are incorporated into the optimization problem introduced in Section

3.4. To close the model, the equilibrium prices of the emissions permits Pt are determined

by market clearing conditions in each period, which I introduce in Section 3.6.
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Figure 5: Overview of the Firm-level Decision Problem
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3.2 Electricity Production and SO2 Emissions

This subsection introduces gross profit from electricity production and associated SO2 emissions.

Note that the gross profit defined here does not include the costs associated with permit

trading. I formally define the optimization problem in Section 3.4.

Consider a firm that produces electricity and emits SO2 as a byproduct. Firm i owns

Jit units of the regulated generating units, each of which is indexed by j. I define the gross

profit from electricity production by the negative of the total cost of generation. The gross

profit πit is thus given by

πit

(
{qjt, Rjt}Jitj=1

)
= −

Jit∑
j=1

pfueljt (Rjt) ·HRj · qjt (3.1)

where pfueljt (Rjt) denotes the unit-specific fuel price per 1 MMBtu of fuel input. The fuel

price is a function of the emissions rate of fuel Rjt, the unit of which is pounds per 1 MMBtu

(lbs per MMBtu). The unit-specific heat rate HRj is the inverse of the production efficiency

measure, which represents how much fuel input (in MMBtu) is needed to produce one unit

of output (MWh of electricity). The heat rate HRj is a design parameter of generating units

and, therefore, is assumed to be exogenous. The unit-level production is denoted by qjt.

The total cost is based on the fuel costs, which account for around 75% of the total

operating expenses for fossil-fuel power plants (see EIA, 2012). The specification does not

consider other types of costs such as the start-up costs of electricity generation. I will further

discuss this point in Section 3.8.
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Electricity generation is associated with SO2 emissions. Firm-level emissions are given by

eit

(
{qjt, Rjt, αjt}Jitj=1

)
=

Jit∑
j=1

(1− αjt)Rjt ·HRj · qjt, (3.2)

where αjt is the removal rate of the scrubber. αjt can take a value between 0 and 1. The

removal rate is endogenously determined by the investment decision.

As discussed in Section 2, firms can adjust the emissions rates of fuel for coal units. On

the other hand, I assume that the emissions rate of fuel Rjt for gas and oil units are fixed and

exogenous in the model. This is because gas and oil units have relatively low SO2 emissions

rate of fuel and are not able to reduce it.

Before moving to the structure of permit trading, I discuss two caveats in the model of

electricity production.

3.2.1 Aggregation of Unit-Level Removal Rate of Scrubber at the Firm Level

To address the dimensionality issue in investment decision problem, I aggregate the unit-level

removal rate of scrubber at the firm level. Specifically, I assume that each firm chooses a

single removal rate of a scrubber that is common across coal units within the same firm (i.e.,

αjt = αit, for j = 1, · · · , Jit). This assumption reduces the number of state variables related

to the scrubber decision to just one.

I adopt this approach in order to maintain the tractability of the model. A key issue in

modeling dynamic investment decisions is the dimensionality of the state space. If I model

the investment decision at the generation unit level, the state variable should include the

installation status of a scrubber at each generation unit. Because the average number of coal

units in each firm in my sample is seven, such a modeling approach would be subject to the

curse of dimensionality and therefore be intractable for the analysis.31

3.2.2 Exogenous Electricity Production

In the structural model of this paper, I assume exogenous electricity production; that is, unit-

level electricity generation qjt is fixed at the observed level. This assumption is motivated by

the observation in Section 2.3.2 that the reduction of output is not a major margin of emissions

abatement (see Appendix A.1 for more detail). This approach also follows previous studies

including Carlson, Burtraw, Cropper, and Palmer (2000), Fowlie (2010b), and Chan (2015),

in which the major margin of abatement is changing coal quality or adopting abatement

technology. Yet, this assumption excludes reallocation of production across generating units

(especially across coal and gas units) as a margin of emissions abatement. In Section 6.1, I

31This approach is, however, not completely innocuous. The firm would prefer to install a scrubber to
the dirtiest plant, as it would be easier to abate emissions from those dirty units. Thus, the model would
under-evaluate the marginal abatement costs under this assumption.
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extensively argue this point by justifying the approach and discussing potential issues due to

the assumption.

3.3 Permit Trading with Transaction Costs

A firm receives an annual allocation of permits ait in each period. Since the allocation

plan was announced before the regulation, the sequence of {ait}2003
t=1995 is exogenous in the

model. The firm also holds the emissions permits that are carried over from the previous

period, denoted by hit. A firm chooses emissions level eit, which is determined by production

quantity and coal quality {qjt, Rjt}Jitj=1 (see Equation (3.2)), net purchase volume bit, and

banking volume hi,t+1. Net-purchase bit is positive (negative) if firm i is a buyer (seller),

implying that she is buying (selling) |bit| units of permits.

The transition of a permit holding is given by

eit + hi,t+1 = ait + hit + bit, (3.3)

hi,t+1 ≥ 0. (3.4)

Equation (3.4) is the non-negativity constraint of banking, and it excludes the possibility of

borrowing permits from a future allocation. I assume that firms achieve perfect compliance

because the compliance rate under the Acid Rain Program was nearly perfect.

I model the permit market as a competitive market with transaction costs. The competitive

market was motivated by the observation that the Acid Rain Program was a federal-level

regulation in which many electric utilities and financial companies participated. Exercising

market power in the permit market was limited.32 Firms are thus price-takers in the permit

market and face the market price Pt.

I incorporate the transaction cost to capture how well the permit market works in a

reduced-form way.33 Given that there were no centralized exchanges for emissions permits

and the majority of permit transactions were bilateral, quantifying the degree of inefficiency

in the permit market is an empirical question.34 Furthermore, the transaction costs capture

inefficiency that is not inherent to the market structure of emissions permits. Such inefficiency

includes managerial frictions (e.g., lack of experience in the early periods of the program).

Although I can consider different micro-foundations for transaction costs, I aim to be agnostic

32Liski and Montero (2011) examined how the four biggest electric utilities (in terms of initial allocation)
traded in the permit market. They found that firms’ behavior is not consistent with the model of market
power in a storable commodity market.

33In the model, permit trading refers to the transaction of permits across firms. This model implicitly
assumes that there are no costs associated with transactions among generating units within the same firm.
This type of transaction is a reallocation of inputs within a firm and thus should not incur any transaction
costs. As mentioned in Section 2.3.4, the trading of permits between related entities (reallocation) has been
active since the implementation of the regulation (see, e.g., U.S. Environmental Protection Agency, 2004).

34Ideally, I should incorporate bilateral trading of emissions permits across participants into the model.
However, such a model could prove to be substantially complicated and difficult to solve because emissions
permits are divisible objects and, moreover, the model features dynamic investments in abatement technology
and permit banking.
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about their interpretations and instead focus on its implications for regulated firms and

welfare outcomes.

The model incorporates two types of transaction costs. First, when a firm trades for the

first time, it pays a sunk cost of participation Fit. This cost is motivated by the observation

that some firms did not rely on permit trading in their compliance strategy. An interpretation

of Fit includes the costs associated with setting up a trading desk at the company and hiring

a financial trading expert. I specify Fit as Fit = F +σF εit, where F is the mean participation

cost, εit is an idiosyncratic cost shock that follows the type-I extreme value distribution G(·),
and σF is the standard deviation parameter.

Second, firms pay variable transaction costs associated with the net purchase of permits

bit (Stavins, 1995). I define the variable transaction cost by TC(|bit|), which is a differentiable

and strictly convex function.35 The cost depends on the volume of trading given by |bit|.36

The convexity of the variable transaction costs is crucial to ensuring that the model is well-

behaved. I will elaborate on this point in Section 3.7.1. Variable transaction costs might

include monetary costs such as brokerage commissions and bid-ask spreads.37 The convex

nature of the cost function captures the difficulty of large-scale transactions of emissions

permits. Suppose that a firm wants to buy a certain quantity of permits, but its trading

partner cannot meet the demand. The firm would then need to find a different trading

partner, which would entail a costly search process in a bilateral market.

The convex assumption of the variable transaction cost is also motivated by the finance

literature, which has extensively studied frictions and transaction costs in the financial

market. In the theoretical analysis, the convex transaction costs are often employed (e.g.,

Gârleanu and Pedersen, 2013, and Dávila and Parlatore, 2017). Such an assumption is

motivated by empirical findings in the stock market (see, e.g., Breen, Hodrick, and Korajczyk,

2002, Lillo, Farmer, and Mantegna, 2003, and Robert, Robert, and Jeffrey, 2012). While the

direct application of the findings from the stock market requires careful consideration, the

trading structure of emissions permit is similar to a typical financial commodity. Brokers

and financial institutions are involved in the transaction of emissions permits, and they often

work as an intermediary between electricity companies regulated by the Acid Rain Program.

Specifically, according to the transaction data of emissions permits, the fraction of emissions

35While I take the absolute value of bit in the transaction cost function, the functional form of TC(·) I adopt
in an empirical application assures the smoothness at b = 0. See Equation (4.2) in Section 4.2 for the details.

36The model assumes that variable transaction costs are dependent on the net volume of trading, |bit|,
rather than the gross volume of trading. The net volume may not align with the gross volume in cases where a
firm simultaneously sells and buys permits within a given period (i.e., a year). To evaluate the plausibility of
this assumption, I calculate the discrepancy between the net volume and the gross volume using the formula
(grossvolume)it−|bit|)

(grossvolume)it
, for firm i in year t. The variable (grossvolume)it is constructed by summing the trading

volume across transactions, which can involve either selling or buying permits, at the firm and year levels.
This measure is equal to zero when a firm only sells or buys permits within a year. I find that 50.7% of the
observations report a value of zero, suggesting that roughly 50% of the firms only sell or buy permits within
a given period. The unconditional mean of this measure is 28.1%.

37In the model, both buyers and sellers pay the variable transaction costs TC(|b|). In estimation, I allow
the variable transaction cost to be different for buyers and sellers. See Equation (4.2) in Section 4.2.
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permits traded by financial companies is approximately 34.5%.

Net-purchase by Fringe Firms The sample does not include all firms participating in

permit trading. For example, financial companies or brokers do not have generation facilities,

but they can still trade permits. In addition, some electricity companies were excluded from

the sample in the process of data cleaning. I denote these firms as fringe firms in the permit

market. To accommodate the presence of fringe firms, I introduce the net demand for permits

by firms outside my sample; the total net purchase by fringe firms is denoted as B̄fringe
t (Pt). I

explain the specification and estimation of the fringe demand function in the Online Appendix

B.

3.4 Optimal Choices of Coal Quality, Trading, and Banking

I now introduce the optimization problem. A firm makes both discrete (participation) and

continuous decisions related to coal quality (emissions rate of fuel), trading, and banking. I

first explain the decision problems conditional on the status of trading participation. These

problems characterize the values from participation and nonparticipation, which determine

the optimal participation decision.

Let V 1
it and V 0

it be the optimal values when a firm participates in trading (“trader”) and

does not participate (“nontrader”), respectively. The Bellman equation for a trader is given

by

V 1
it (hit, αit) = max

{Rjt}j∈Jit ,bit,hi,t+1

πit

(
{qjt, Rjt}Jitj=1

)
− (Ptbit + TC(|bit|)) + βEVi,t+1(hi,t+1, 1, αit+1)

s.t. eit

(
{qjt, Rjt}Jitj=1, αit

)
+ hi,t+1 = ait + hit + bit, (3.5)

hi,t+1 ≥ 0.

Here, EVit(hit, Iit, αit) denotes the ex-ante value function for firm i in period t when the firm

holds hit units of emissions permits, the trading experience is Iit, and the removal rate of

scrubber is αit. Recall that Iit = 1 if firm i has participated in the market previously, thus

paying the participation cost. In such a case, EVit(hit, 1, αit) = V 1
it(hit, αit). When a firm

is a nontrader (i.e., Iit = 0), the trading volume bit is not the choice variable. The Bellman

equation in this case is similarly given.

Note that the value functions V 0
it(·) and V 1

it(·) are indexed by firm i and time t. The

former is due to the firm heterogeneity, while the latter is due to the nonstationary nature

of the decision problem. These indices implicitly subsume all state variables, except for hit,

Iit, αit, and εit. I assume perfect foresight over the state variable in the next period, except

for the shock to the participation cost εit.
38

The right-hand side of the Bellman equation (3.5) is a constrained optimization problem.

38See Section 6.2 for a detailed discussion of this assumption.
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A firm optimally chooses unit-level coal quality (emissions rate of fuel) {Rjt}Jitj=1, the trading

volume bit, and the banking hi,t+1 subject to the transition of permit holding and the non-

borrowing constraint.39 The optimality conditions for the traders are given by40

λit(1− αit)HRjqjt = −
∂pfueljt (Rjt)

∂Rjt
HRjqjt (3.6)

λit = Pt +
dTC(|bit|)

dbit
(3.7)

λit = β
dEVi,t+1(hi,t+1, Ii,t+1, Ri,t+1)

dhi,t+1
+ µit, (3.8)

µithit+1 = 0, µit ≥ 0, hi,t+1 ≥ 0, (3.9)

and the transition of permit holding given by Equation (3.3). λit denotes the Lagrange

multiplier on the transition of permit holding (3.3), while µit denotes the Lagrange multiplier

on the non-borrowing constraint (3.4). The Lagrange multiplier λit is interpreted as the

shadow value of emissions permits for firm i.

Equation (3.6) is obtained from the optimal coal quality decision. The term (1−αjt)HRjqjt
in the left-hand side is the marginal abatement of emissions when a firm adjusts coal quality.

Multiplying the term with the shadow value λit, the left-hand side is the value of marginal

abatement through coal quality choice. The right-hand side is the marginal cost of coal

purchase. Rewriting this equation, I get

λit =
1

(1− αit)
∂pfueljt (Rjt)

∂Rjt
, (3.10)

implying that the marginal price of fuel after adjusting the removal rate of scrubber is equal

to the shadow costs of permits λit. This equation will be key in identifying the transaction

cost parameter, which I discuss in Section 4.2.

Equations (3.7)–(3.9) determine the shadow value λit from the trading and banking

decisions. Equation (3.7) states that the shadow value is equal to the sum of the market price

and the marginal transaction costs dTC(|bit|)
dbit

. In other words, the marginal transaction cost

serves as the wedge between the market price and the firm-level shadow value of emissions.

Equations (3.8) and (3.9) constitute the Euler equation: the shadow value of an emissions

permit today is equal to the sum of the discounted marginal value of holding an additional

permit tomorrow and the shadow value of borrowing (when it is binding). These conditions,

along with the transition equation of permit holdings (3.3), determine the optimal choices

for coal type {Rjt}Jitj=1, trading bit, and banking hi,t+1.

39In numerical analysis, I restrict Rjt between 0.1 lbs per MMBtu and 5.0 lbs per MMBtu.
40The Lagrangian for this constrained optimization problem is L = πit

(
{qjt, Rjt}Jitj=1

)
−(Ptbit + TC(|bit|))+

βEVi,t+1(hi,t+1, 1, αi,t+1)+λit
(
ait + hit + bit − eit

(
{qjt, Rjt}Jitj=1, αit

)
− hi,t+1

)
+µithi,t+1. Taking the first-

order-conditions for each choice variable, I obtain the optimality conditions (3.6), (3.7), (3.8), and (3.9). See
the Online Appendix D.1 for the detailed derivation.
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The optimality conditions for non-traders are the same as those above, except bit = 0 and

I do not have Equation (3.7). These conditions imply that the shadow value of an emissions

permit is not directly related to today’s permit price. Rather, the shadow value is given by

the discounted marginal value from Equation (3.8).

Given the optimal value V 0
it and V 1

it , I consider the participation decision. If a firm has

no prior trading experience (i.e., Iit = 0), it can choose whether to participate in the market

by paying Fit(= F + σF εit). A firm participates in the market if V 1
it(hit, αit)− (F + σF εit) >

V 0
it(hit, αit). Thus, this optimal decision leads to the following participation probability:

Pit(hit, αit) =

∫
1
{
V 1
it(hit, αit)− (F + σF εit) > V 0

it(hit, αit)
}
dG(εit).

Since I assume the type-I extreme value distribution of εit, the participation probability is

given by the well-known logit formula.41 If a firm has already participated in trading (i.e.,

Iit = 1), it does not have to pay the participation costs.

Based on the optimal choices for traders and non-traders, I now provide the value function.

Let Vit(hit, Iit, αit, εit) be the value function after observing the random draw of the participation

costs. The value function is given by

Vit(hit, Iit, αit, εit) =

max
{
V 0
it(hit, αit), V

1
it(hit, αit)− (F + σF εit)

}
if Iit = 0

V 1
it(hit, αit) if Iit = 1.

Finally, the ex-ante value function EVit(hit, Iit, αit) (before observing εit) are given by the

integral of Vit with respect to εit.
42

Continuation Value at the Terminal Period My model is a finite-period model and

the terminal period T is 2003, which is the last period of my sample. Although the Acid Rain

Program continued after 2003, I choose the year 2003 as the terminal period for the reasons

discussed at the beginning of Section 2.2. To model the incentive to bank permits at the

terminal period 2003, I include the reduced-form continuation value function CVT+1(hi,T+1)

in the model. In Section 4.2, I provide the functional form of CVT+1(hi,T+1), and estimate

it along with other parameters.43

3.5 Investment Decisions on Scrubbers

This subsection introduces the investment decision problem regarding scrubbers. The model

assumes that a firm makes a scrubber investment at the beginning of each phase (in 1995

and 2000). This assumption implies that the removal rate of a scrubber αit is phase-specific,

41See the Online Appendix D.2 for more details.
42See the Online Appendix D.2 for the details of the ex-ante value function EVit(hit, Iit, αit).
43See, e.g., Keane and Wolpin (2001) and Jørgensen and Tô (2020) for an empirical analysis that takes a

similar approach.
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i.e., αit = α1
i for t ∈ {1995, . . . , 1999} and αit = α2

i for t ∈ {2000, . . . , 2003}. While this

assumption simplifies the investment problem, this is motivated by the data and several other

considerations. First, the data show the lumpy investment pattern, as found in Figure A8 in

the Online Appendix.44 Much of the scrubber adoption occurs between the announcement

of the ARP and the beginning of regulation. Such lumpy investment might reflect the fact

that the installment of a scrubber requires several years of lead time. As a result, firms

make a long-term decision to install a scrubber, rather than making a new decision every

year based on the economic environment at the time. An alternative approach would be

to incorporate the time-to-build nature of scrubber investment and to allow firms to make

an annual decision. Such a model would be significantly complicated, though. Given these

considerations, I choose to adopt a simple approach to model scrubber adoption.45

Firm i determines the install rate of a scrubber in each Phase l, denoted by gli for l = 1, 2.

The install rate gli denotes the share of the total capacity of generating units to which the

scrubber is installed, and thus can take a value between 0 and 1. The removal rate of

a scrubber αli is determined by αli = 0.9gli, implying that the maximum removal rate of

a scrubber is 90%.46 I assume that the install rate of a scrubber is a continuous choice

variable. I denote the cost function of scrubber installment by Γ ((g − ḡ) ki), where g is the

install rate chosen by a firm, ḡ is the install rate before the investment decision, and ki is the

total capacity of coal units owned by firm i. Note that the capacity size of units to which a

scrubber is installed is denoted by (g − ḡ) ki.
47

The investment problem for Phase I is given by

max
g1i

EVi,1995(hi,1995, Ii,1995, 0.9g
1
i︸ ︷︷ ︸

=α1
i

)− Γ
((
g1
i − g0

i

)
ki
)

s.t. g1
i ≥ g0

i , (3.11)

where g0
i is the install rate of a scrubber in 1990. I choose 1990 as the baseline year because

the Acid Rain Program was announced in 1990. I incorporate the irreversibility of investment

by allowing g0
i to affect both the investment cost and the choice set of the install rate of a

scrubber g1
i . The problem for Phase II is defined similarly, except that the investment cost

now depends on g1
i , which is determined endogenously at the beginning of Phase I.

44For Group 1 units that are regulated from 1995, the number of units with a scrubber increased from 26 in
1990 to 52 in 1995. After that, it only increased from 52 in 1995 to 58 in 2003. Regarding the Group 2 units
that are regulated from 2000, the number increased from 122 in 1990 to 148 in 2000. Although the number
increased further to 171 in 2003, the increase in the total capacity of units with a scrubber was not as large.
From 1990 to 2000, the total capacity increased by 9,012 MW (52,225 MW to 61,273 MW), while it increased
by 4,136 MW from 2000 to 2003. See Figure A8 in the Online Appendix for more details.

45See, e.g., Kalouptsidi (2014), whose work incorporates the time-to-build nature of investment decisions in
dynamic structural estimation.

46This number is taken from Table 9.3 of Ellerman, Joskow, Schmalensee, Montero, and Bailey (2000).
47The firm-level generation capacity ki is given by the sum of the generation capacity of coal generating

units a firm owns. The capacity is a fixed characteristic of generating units and is assumed to be exogenous in
this analysis. In other words, the abatement choice for SO2 emissions does not affect the generation capacity.
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3.6 Dynamic Competitive Equilibrium of Permit Trading

To close the model, I define an equilibrium of the permit market. I assume that firms

have perfect foresight over the future environment and that the only stochastic shock is the

participation cost εit. I discuss the importance and implications of this assumption in Section

6.2.

Definition (Dynamic Competitive Equilibrium). In a finite-period competitive equilibrium

with perfect foresight, a sequence of permit prices {Pt}2003
t=1995 is determined such that

1. [Optimization] Each firm i optimally chooses
{
{R∗jt}

Jit
j=1, b

∗
it, h

∗
i,t+1

}2003

t=1995
and

{
g1∗
i , g

2∗
i

}
,

given a sequence of permit prices, and

2. [Market Clearing]
∑N

i=1 b
∗
it

(
{Pt}2003

t=1995

)
+B̄fringe

t (Pt) = 0 holds for all t = 1995, · · · , 2003.

To solve the equilibrium, I repeat the following procedure: (i) Given a candidate of permit

prices {Pt}2003
t=1995, solve the individual optimization problem using backward induction for

each firm, and (ii) calculate the aggregate level of net purchases to determine whether the

market-clearing conditions are satisfied in all periods. I use a heuristic rule of updating the

price vector in each iteration, which successfully identifies a unique vector of equilibrium

permit prices satisfying the market-clearing conditions.48 I elaborate on how to numerically

compute a vector of equilibrium prices in the Online Appendix E.3.

3.7 Model Implications

This subsection discusses the implications of the model. Most notably, I argue that the

role played by transaction costs, TC(·) and Fit, in firms’ dynamic decisions and equilibrium

outcomes is significant.49 To discuss this point, I first show the benchmark case in which no

transaction costs exist; namely, TC(·) = 0 and Fit + εit = 0. In this case, the optimality

conditions (3.6)–(3.9) can be summarized as50

1

(1− αjt)
∂pfueljt (Rjt)

∂Rjt
= Pt. (3.12)

Pt = βPt+1 + µit, µit ≥ 0 ⊥ hi,t+1 ≥ 0. (3.13)

I discuss the roles of transaction costs in terms of (1) avoiding the indeterminacy of trading/banking

decisions and (2) the cost-effectiveness of the cap-and-trade.

48Although I lack a formal proof for the uniqueness of the equilibrium, I used several different initial values
for permit prices and confirmed that these initial values converge to the same equilibrium prices.

49A discussion on how the presence of transaction costs breaks the independence property of the initial
allocation(i.e., Coase, 1960 theorem) is available upon request.

50Equation (3.7) implies that λit = Pt holds for all i. Using the envelope theorem, Equation (3.8) implies

that
dEVi,t+1(hi,t+1,Ii,t+1,Ri,t+1)

dhi,t+1
= Pt+1. See the Online Appendix D.2 for the derivation.
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3.7.1 Avoiding the Indeterminacy of Trading/Banking Decision

Equation (3.13) implies that the equilibrium permit prices Pt should increase over time at

the rate β−1 as long as the aggregate banking is positive and no transaction costs exist.

This property is known as the Hotelling r−percent rule: the price of an exhaustible resource

should increase at a rate equal to the interest rate, or the inverse of the discount factor (see,

e.g., Rubin, 1996).

More importantly, the model without transaction costs suffers from the indeterminacy

of individual optimal decisions; that is, it does not identify the individual optimal behavior

for trading bit and banking hi,t+1 in the absence of transaction costs. This is because the

discounted marginal value from banking is constant (and given by βPt+1), which is equal to

the current shadow value Pt in equilibrium. Thus, the marginal values of net purchases bit

and banking hi,t+1 are always the same. Therefore, any choices regarding bit and hi,t+1 are

equivalent for a firm, as long as it can produce the level of emissions given by the optimality

condition on coal quality (3.12).

I now consider the case in which transaction costs are present. Combining optimality

conditions (3.7) and (3.8) and using the envelope theorem, I obtain the following condition:

Pt +
dTC(|bit|)

dbit
= β

{
Pt+1 +

dTC(|bit|)
dbit

}
+ µit.

This condition implies that the permit price does not necessarily increase at the rate of β−1.

Without convex transaction costs, the price path in which Pt > βPt+1 (or Pt < βPt+1)

cannot be an equilibrium because firms have an incentive to sell their permit holding (or

buy an infinite number of permits) in period t. Intuitively, the presence of transaction costs

prevents firms from engaging in complete inter-temporal arbitrage.

The model now identifies the optimal decisions for both net purchases bit and banking

volume hi,t+1 because the marginal values of the two are no longer constant. The marginal

cost from net purchases increases due to the convex transaction costs TC(|bit|). The discounted

marginal value from banking, given by β
(
Pt+1 + dTC(|bit|)

dbit

)
, decreases in ht+1 because holding

additional permits in period t+1 (i.e., higher hi,t+1) leads to lower bi,t+1 (selling more permits)

and, thus, a lower marginal value. In other words, the marginal revenue from selling is shown

to fall when firms sell additional permits because they have to pay transaction costs.

3.7.2 Cost-effectiveness of Cap-and-Trade

One of the virtues of a cap-and-trade regulation is that the equilibrium allocation of emissions,

given the emissions cap, is cost-effective in the absence of transaction costs. Equation (3.12)

implies that the marginal abatement cost is equalized across firms at the level of permit price

Pt. The key mechanism is that all firms face the same shadow value given by the market

price (i.e., λit = Pt,∀i).
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I now examine how the transaction cost affects the shadow costs of emissions permits and

leads to an inefficient outcome of cap-and-trade. Consider two types of firms: a buyer (i.e.,

bbuyer,t > 0), and a seller (i.e., bseller,t < 0). Equation (3.6) implies that

λbuyer,t > Pt > λseller,t.

The inequalities hold because dTC(|bit|)
dbit

> 0 for b > 0, and dTC(|bit|)
dbit

< 0 for b < 0.51

Intuitively, in the presence of variable transaction costs, buyers incur additional costs to

purchase emissions permits. In contrast, the revenue from selling a unit of emissions permits

is the market price minus the marginal transaction costs. Thus, the marginal cost of emissions

for the buyer is strictly higher than that for the seller. In other words, buyers emit less and

sellers emit more than the efficient level at which the marginal abatement costs are equalized

across firms.

The heterogeneity of the shadow value has an important impact on abatement decisions

and permit banking. The return on investment is determined by the marginal abatement of

emissions, given by
∑Jit

j=1Rjt · HRjt · qjt, evaluated at the shadow value of λit.
52 Because

the shadow value for buyers is higher than that for sellers, buyers have a greater incentive to

invest, whereas sellers have a lower incentive.

With regard to permit banking, buyers have a lower incentive to bank permits because

the transaction costs lead to a higher shadow value today. By contrast, sellers prefer to bank

additional permits because of the lower shadow value. Thus, the aggregate level of permit

banking can be higher or lower than the case without transaction costs. I will examine the

impact of transaction costs on aggregate permit banking in Section 5.

3.8 Discussion of Modeling Assumptions

In this subsection, I briefly discuss modeling assumptions. However, I defer detailed discussions

on several issues, including (1) model of production decision, (2) perfect foresight assumption,

and (3) public utility regulation to Section 6.

Entry/Exit Decisions The model does not incorporate entry and exit decisions. As I

discussed at the beginning of Section 2.3.2, the retirement of the coal unit was relatively

limited in the sample period I employed, indicating that emissions abatement through the

unit retirement was not a major option. Regarding entry decision, I observe virtually no entry

of coal units. Although I observe the entry of gas units, those units served as marginal units

in the merit order of electricity generation due to the higher marginal costs of production

and smaller generation capacity.53 Therefore, firms would not replace coal units with gas

51To see this, dTC(|bit|)
dbit

= dTC(|bit|)
d|bit|

d|bit|
dbit

. The first term is positive and the second term is positive (negative)

when b > 0 (b < 0).
52See the Online Appendix D.3 for the derivation of the marginal returns from an abatement investment.
53Although gas units have recently become competitive with coal units in terms of production costs due to

the shale boom since the late 2000s, gas units exhibited much higher marginal production costs in my sample
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units as an abatement strategy in my study period. Given these observations, I chose not to

incorporate entry and exit decisions in my model. See Ryan (2012), Fowlie, Reguant, and

Ryan 2014, Dardati (2016), and Cook and Lin Lawell (2018), which empirically study the

implications of environmental regulations for entry and exit decisions.

Start-up Costs The production decision in the model excludes the dynamic incentive

that arises due to the presence of the start-up costs in electricity generation. Such a dynamic

incentive would matter when I model the production decision at a high frequency (e.g.,

daily or hourly). Instead, this paper focuses on longer-horizon decisions (namely year-level

decisions) under cap-and-trade. See Mansur (2008) and Reguant (2014) for an empirical

study that explicitly considers the start-up costs in electricity generation in a high-frequency

(daily) setting.

Environmental Regulation on NOx Emissions The analysis focuses on SO2 emissions

and does not consider NOx emissions from coal power plants. The NOx budget program,

which is a cap-and-trade program on NOx emissions regulation, started in 2003. There are

56 firms (out of a total of 138 firms) that own generating units that are affected by this

program. However, the effects of NOx regulation on SO2 abatement are limited. First, the

NOx control technologies, including low NOx burners and selective catalytic reduction, do

not affect SO2 emissions, which is primarily abated by fuel switching and scrubbers. Second,

the abatement of these two types of emissions might be interrelated through the reduction

of electricity generation. If the generation unit faces a shadow cost of NOx emissions due

to the presence of cap-and-trade on NOx, it might reduce electricity generation due to the

higher production costs, which contributes to the abatement of SO2 emissions. However,

Fowlie (2010b) showed that the abatement of NOx emissions through production reduction

is limited. For these reasons, I do not consider NOx emissions in this paper.

Interpretation of Continuation Value Function CVT+1(·) The continuation value

function CVT+1(hT+1) captures the incentive to bank emissions permits at the terminal

period (i.e., 2003). More precisely, I assume that CVT+1(·) captures a firm’s incentive to

bank under the expectation that the Acid Rain Program continues after 2004 without any

additional regulations. This is a reasonable assumption, given that the Clean Air Interstate

Rule was announced in the last month of 2003 (i.e., December 2003), implying that, in 2003,

firms were expecting the same regulatory environment to continue after 2004.54

period of 1995–2003.
54One might think that an alternative approach is to model the problem in the terminal period as a stationary

and infinite-period dynamic programming problem. I believe, however, that the stationary assumption is not
adequate in Phase II. Even though permit allocation does not change during Phase II (i.e., after 2000), the
aggregate stock (banking level) of emissions permits decrease over time. Thus, equilibrium permit prices
still change depending on the aggregate level of permit holding in each year (see, e.g., Rubin (1996) and
Schennach (2000) for theoretical analysis). Therefore, I assume a non-stationary environment in Phase II.
This assumption requires me to model the continuation value function in the terminal period.
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4 Estimation

This section explains the estimation of model primitives and results. In Section 4.1, I obtain

the gross profit function πit

(
{qjt, Rjt}Jitj=1

)
in Equation (3.1) by estimating the hedonic

function for coal price pfueljt (Rjt) without solving the dynamic decision problem. Using the

estimated profit function, I estimate the remaining model parameters in Section 4.2, including

the variable transaction costs TC(|b|), the distribution of the fixed transaction costs Fit,

and the continuation value at the terminal period CVT+1(hi,T+1). Identification of these

parameters is also discussed. To estimate these parameters, I use a simulated nonlinear least

squares approach, in which I numerically solve the individual dynamic decision problems

to match the model prediction with its empirical counterpart. Note that I fix the annual

discount factor at β = 0.95 throughout this paper. Moreover, I use engineering estimates of

the install costs of a scrubber.55

4.1 Hedonic Regression of Coal Price

The gross profit function given by Equation (3.1) depends on the fuel price function pfueljt (Rj,t).

I estimate the fuel price hedonic function using the fuel procurement data.56 The data are

taken from the Form FERC No.423 (EIA-423) “Monthly Report of Cost and Quality of

Fuels for Electric Plants”. These data report plant- and monthly-level information on fuel

procurement, including fuel type, sulfur content, heat content, and purchase costs.

I consider the following hedonic function, which describes the coal price pfuelk,l,m in fuel

delivery k for plant n in month-year m:

log(pfuelk,n,m) = (φr + φage1 log(agenm)) log(Rk,n,m) +φage0 log(agenm) +φs+φm+uk,n,m, (4.1)

where pfuelk,n,m is the coal price including shipping costs, measured in cents per MMBtu, and

Rk,n,m is the SO2 emissions rate of fuel, measured in lbs per MMBtu. Although other coal

characteristics (e.g., ash content) are available in the dataset, I only include the emissions

rate of fuel in this function because those characteristics depend on the SO2 emissions rate

of fuel.57

In the above specification, I incorporate a rich set of control variables that captures the

plant-level heterogeneity. First, φm and φs are year-and-month dummies and state-of-plant

55Estimation of the fringe demand B̄fringet (Pt) is discussed in the Online Appendix B.
56I need to estimate the fuel price hedonic function because the choice of emissions rate of fuel is continuous

in my model. This approach stands in contrast to the approach adopted in other papers where the choice of
coal type is modeled as the discrete decision (e.g., Keohane, 2006; Chan, 2015).

57The primary role of the fuel price function is to predict how the choice of an SO2 emissions rate of
fuel affects the coal price. Because other product characteristics could change with the choice of the SO2

emissions rate of fuel, it would be erroneous to predict how the coal price would change with respect to the
SO2 rate, holding other characteristics fixed. For example, the distance between coal plants and coal mines is
an important determinant of coal price. However, if a plant changes its emissions rate of coal, it also changes
the coal mine from which it buys coal, thus affecting the distance. Therefore, I only include plant-level
characteristics, not coal-specific characteristics, in the fuel price function.

31



dummies. The geographic location of power plants is an important factor in coal procurement,

as it involves a large shipping cost. The elasticity parameter φr is allowed to be different

across regions because plants located closer to the West and the Powder River Basin are able

to buy low-sulfur coal at the cheaper prices due to lower shipping costs.58 I also include the

variable agenm defined by the average age of coal units owned by plant n. The age variable

captures the plant-level heterogeneity in abatement costs through fuel procurement. For

example, the newer plants might find it easier to switch from dirtier to cleaner coal.

Table 2 reports the results of coal price regression. Region group 1 consists of Northeast

and South, while region group 2 consists of Midwest and West. The estimated coefficients

imply that the price of coal for the given emissions rate of fuel is cheaper in region group

2, which is consistent with the fact that Midwest and West regions are closer to the Powder

River Basin and thus have better access to coal. Note that the estimated coefficient on the

log of emissions rate of fuel, φr + φage1 log(agenm), is negative for all observations. Thus,

the marginal fuel price increases as the emissions rate of fuel decreases, implying that the

marginal cost of abatement by coal quality changes is higher for lower emissions rate of fuel.

Table 2: Hedonic Regression of Coal Price

log(fuel price)
Model: (1)

Variables
log(emissions rate of fuel)*(Region Group 1) -0.1496 (0.0042)
log(emissions rate of fuel)*(Region Group 2) -0.0686 (0.0043)
log(emissions rate of fuel)*log(age) 0.0114 (0.0013)
log(age) 0.0161 (0.0008)
Year-and-Month fixed effect Yes
State of Plant fixed effect Yes

Fit statistics
R2 0.49
Observations 298,378

Notes: Estimates of month-and-year and state dummies are omitted. Robust standard errors
are reported.

4.2 Estimation of Transaction Costs and Continuation Value Function

With the gross profit function πit

(
{qjt, Rjt}Jitj=1

)
estimated in Step 1, I estimate the remaining

parameters, including the transaction costs and continuation value. As noted above, I fix the

58I use the definition of US regions provided by the US Census Bureau (U.S. Census Bureau, 2011). There
are four regions: Northeast (CT, ME, MA, NH, RI, VT, NJ, NY, PA), Midwest (IL, IN, MI, OH, WI, IA, KS,
MN, MO, NE, ND, SD), South (DE, DC, FL, GA, MD, NC, SC, VA, WV, AL, KY, MS, TN, AR, LA, OK,
TX), and West (AZ, CO, ID, MT, NV, NM, UT, WY, AK, CA, HI, OR, WA).
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annual discount factor at β = 0.95 throughout the analysis. I use engineering estimates of

the install costs of a scrubber. The install costs of a scrubber is taken from Ellerman, Joskow,

Schmalensee, Montero, and Bailey (2000) and set to $239 per kilowatt hour of capacity in

1994 USD.59

My model features two types of transaction costs: variable costs and participation costs.

The variable transaction cost function TC(|b|) is specified as follows:

TC(|b|) =
1

η2 + 1
exp

(
ηbuy0 1{b > 0}+ ηsell0 1{b < 0}+ η1 log(sizei)

)
|b|η2+1, (4.2)

where sizei denotes firm i’s size, measured by the sum of the generation capacity of firm i. I

allow a firm’s size to affect the magnitude of transaction costs to determine whether bigger

firms face lower transaction costs. An example of such a possibility is investing human capital

of financial traders. Larger firms, which also trade larger volumes of permits, may need to

invest in more labor, ultimately leading to lower variable transaction costs. In addition, I

allow transaction costs to differ depending on whether the firm is buying or selling permits.

Lastly, to estimate the variable transaction cost function in a flexible way, I incorporate the

parameter η2, which measures the curvature of the variable transaction cost function. The

parameter is assumed to satisfy η2 > 0 to maintain the strict convexity and the smoothness

at b = 0.60

The participation cost Fit is specified as

Fit = F + σF εit, (4.3)

where εit follows an i.i.d. type-I extreme value (Gumbel) distribution, with standard deviation

parameter σF .

I consider the following specification of the continuation value in the terminal period:

CV (hi,T+1) = exp
(
ψ0 + ψ1 log(sizei) + ψ2α

2
i + ψ3Ii,T

)
(hi,T+1)ψ4 . (4.4)

The coefficient depends on the firm size, sizei, and on the removal rate of the scrubber in

Phase II, α2
i . These variables capture the heterogeneity in the incentives to bank permits in

the terminal period (i.e., 2003). The parameters estimated in this step are summarized as

θ = (ηbuy0 , ηsell0 , η1, η2, F, σF , ψ0, ψ1, ψ2, ψ3, ψ4).

The estimation procedure builds on the literature of estimation of dynamic structural

59I use estimates from ICF90 and EPRI93 reported in Table 9.3 of Ellerman, Joskow, Schmalensee, Montero,
and Bailey (2000). I take the average of initial capital costs of ICF90 and EPRI93. Because these reported
numbers are measured in 1994 USD, I converted them into 2000 USD in the analysis.

60Alternatively, I could adopt a flexible specification that uses both quadratic and linear terms such as
TC(|b|) = η1|b|+ η2|b|2. However, a linear component creates a kink at b = 0, making numerical computation
difficult. The specification of the transaction cost TC(|b|) adopted for estimation is a smooth function with
respect to b and keeps a flexibility by a parameter η2.
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models in industrial organization and labor economics.61 I use a simulated nonlinear least

squares approach to estimate the model parameters. For a given candidate of parameter θ, I

solve the model to obtain the prediction of the choice variables and match it with the data.

The procedure for obtaining the model prediction is as follows:

1. Fix a candidate of parameter θ and the observed permit prices {Pt}2003
t=1995.

2. For each firm i, solve the optimization problem using backward induction and obtain

the policy functions.

3. Using the policy functions, simulate the optimal decisions for each pattern of participation

in permit trading. Denote the year of participation by s ∈ {∅, 1995, · · · , 2003}, where

s = ∅ means that the firm does not trade in that period. Denote the optimal decision

for pattern s by x̂it(s).

4. Calculate the probability that each pattern of participation timing is realized. Denote

this probability by Probenterit (s).

5. The prediction for firm i in year t is given by

x̂it =
∑

s∈{∅,1995,··· ,2003}

Probenteri (s)x̂it(s). (4.5)

Note that I do not have to solve for a dynamic competitive equilibrium to obtain a model

prediction because I can use the observed prices of emissions permits as a sequence of

equilibrium prices. Given the observed permit prices, I solve the single-agent optimization

problems, which are much easier to solve than the dynamic competitive equilibrium.62

Using the simulated choices, I calculate the objective function. The objective function

measures the distance between the prediction and the data at the firm and year levels:

J(θ) =
N∑
i=1

(
xdatai − x̂i(θ)

)′
Ωi

(
xdatai − x̂i(θ)

)
,

where xdatai is a vector of endogenous variables, and x̂i(θ) is the corresponding vector for the

model prediction, given parameter θ. The vector xdatai includes emissions eit, net purchases

bit, trading volume |bit|, permit banking hit, the install rate of a scrubber (g1
i , g

2
i ), as well

as a dummy variable that indicates whether firm i participates in the permit market. The

weighting matrix Ωi is a diagonal matrix used to adjust for differences in scaling. Specifically,

I use the inverse of the variance of each choice variable in the dataset as a weight.

61See Aguirregabiria and Mira (2010) for a survey of this literature.
62This empirical strategy is similar in spirit to that in the two-step estimation of a dynamic game, in which

the equilibrium objects are recovered directly from the observed data. For example, Aguirregabiria and Mira
(2007) estimate players’ beliefs over other players’ policies from the observed data. They then solve the optimal
response of a player, given the estimated beliefs, in order to construct the pseudo-likelihood function.
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Standard errors are calculated using the bootstrap method at the firm-history level.

I randomly draw samples from 114 firms, with replacement, and construct 40 bootstrap

samples.

Identification I first discuss the identification of the variable transaction costs. The

optimality conditions (3.10) and (3.7) imply that, without variable transaction cost TC(·),
the marginal price of fuel (i.e., the left-hand side of Equation (3.10)) should be equalized

across firms and made equal to the permit price. Since I obtain the marginal price of fuel by

estimating the hedonic function, I can identify the variable transaction costs using these two

conditions. Intuitively, the variable transaction costs are identified from how the marginal

fuel price vary with the trading volume.63

My identification strategy relies on the assumption that the variation in transaction

volume is uncorrelated with unobserved factors that may influence the fuel price. Thus,

it is crucial to estimate the fuel price function by controlling for potential heterogeneity. In

estimating the fuel hedonic function, I incorporate a rich set of fixed effects that capture

aggregate shocks and geographic difference in coal access. Any remaining heterogeneity

the specification does not capture might be attributed to the estimated transaction costs,

implying the overestimation of the costs.

Other primitives are also identified in a similar manner. Parameters on the distribution

of the sunk participation costs (F, σF ) are identified using the information on the firm-level

participation in permit trading. Note that I observe the level of payoffs, namely the gross

profit (i.e., the negative of the total production cost) πit(·), which allows me to identify the

scale parameter σF . Lastly, the continuation value at the terminal period CVT+1(hi,T+1, R
2
i )

is identified by the optimality condition for the banking in the terminal period hi,T+1.
64

Estimation Results Table 3 presents the parameter estimates of θ. With regard to the

variable transaction costs, the coefficient on the firm size is negative but small. This result

implies that, although bigger firms tend to have lower transaction costs, the heterogeneity

across firms is negligible. Based on the parameter estimates, I calculate the marginal transaction

cost, given by exp
(
ηbuy0 1{b > 0}+ ηsell0 1{b < 0}+ η1 log(sizei)

)
|b|η2 . The mean of the costs

is $46.1, while the median is $32.1 Considering that the permit prices range between $100

and $200, as reported in Figure 4, the estimated transaction costs are sizeable. This estimate

indicates the large dispersion of the shadow value of emissions across firms, implying an

63With the transaction-level price, which is not available in this empirical context, I could measure
transaction costs at the transaction level by comparing the shadow value of emissions and the actual transaction
price. The granular data would allow me to estimate transaction costs at the buyer-seller combination level.
See Hagerty (2019), who uses the transaction-level price of water rights to estimate transaction costs in the
context of water markets in California.

64The FOC from the banking decision in the terminal period hi,T+1 implies λi,T =
∂CVT+1(hi,T+1,R

2
i )

∂hi,T+1
=

ψ4 · exp
(
ψ0 + ψ1 log(sizei) + ψ2α

2
i,T + ψ3Ii,T

)
(hi,T+1)ψ4−1. Since λi,T is obtained by the marginal fuel price

(i.e., Equation (3.10) ), I can use this equation to identify the parameters in the continuation value function.
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inefficient outcome of the cap-and-trade. The mean and the standard deviation of the

participation costs is around $0.64 million and $3.57 million, respectively. However, these

parameters are rather imprecisely estimated because the participation rate in permit trading

is relatively high (91%), as seen in Section 2.3.4. The estimated parameters in the continuation

value function at the terminal period have intuitive signs. Installment of a scrubber and

participation in permit trading have a positive effect on continuation value.

Table 3: Parameter Estimates of Transaction Costs and Continuation Value Function

Parameter Description Estimate Standard Errors

Variable Costs TC(·) ηbuy0 Constant for buying −3.015 (1.189)
ηsell0 Constant for selling −4.005 (1.392)
η1 Firm size −0.008 (0.004)
η2 Curvature 0.461 (0.208)

Participation Costs Fit F Mean ($1 million) 0.639 (0.357)
σF Std. Dev. ($1 million) 3.574 (0.266)

Continuation Value CVT+1(·) ψ0 Constant 1.332 (0.358)
ψ1 Firm Size 0.019 (0.004)
ψ2 Install rate of a Scrubber 0.184 (0.013)
ψ3 Trading Status 0.831 (0.131)
ψ4 Curvature 0.115 (0.048)

5 Policy Simulation

Using the estimated model, I conduct a series of counterfactual simulations to investigate

the implications of transaction costs and alternative policy design. Table 4 summarizes the

simulation designs. I first quantify the outcome with the lowest abatement costs under

cap-and-trade by eliminating transaction costs (Section 5.1). I then evaluate the impact of

the permit banking system in Section 5.2. As an alternative to cap-and-trade regulation,

I simulate the outcome under emissions tax policy in Section 5.3. As I will explain later,

the emissions tax policy can be considered to be the policy that eliminates both transaction

costs and permit banking. The Online Appendix F explains how to simulate the equilibrium

outcome in each case. All simulation outcomes are compared against the baseline outcome,

which I solve using the estimated parameter. I calculate standard errors of simulation results

via parametric bootstrap of model estimates.65

65I use parameter estimates based on bootstrap samples obtained in Section 4.2. Note that I fix all other
parameters, including the fuel price hedonic function. I do this to quantify the standard errors of simulations
associated with the key model parameters, namely transaction costs, that affect the welfare implications.
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Table 4: Simulation Design

With banking No banking

With
Baseline

No permit banking between Phases
transaction costs (Section 5.2)

Without Cost-effective Constant emissions tax
transaction cost (Section 5.1) (Section 5.3)

5.1 The Potential Gains from Trade by Eliminating Transaction Cost

I first simulate the outcome when all transaction costs are eliminated.66 This outcome is the

one that minimizes the total abatement costs. By comparing this outcome with the baseline,

I evaluate how well the cap-and-trade program works in terms of both abatement costs and

environmental externality (i.e., health and environmental damages).

As discussed in Section 3.7.2, transaction costs lead to an inefficient outcome in a cap-and-

trade program. The estimates of the model parameters suggest that the variable transaction

costs are substantial, implying the large dispersion of the shadow value across firms. In this

simulation, I set both participation and variable transaction costs to zero.67 It is also noted

that I fix the level of permit banking in 2003 and the fringe supply at the level of baseline

equilibrium outcome. By doing so, I fix the total amount of emissions across two different

cases.68

This simulation quantifies the distortion of the firm’s decisions due to the presence of

transaction costs in permit trading. I first explain its effect on permit banking. Figure 6

plots the aggregate level of permit banking in each year, with and without transaction costs.

Figure 6 indicates that firms bank fewer permits on average in the baseline case compared

with the cost-effective case. The transaction costs have a heterogeneous impact on the firm’s

incentive to bank permits. Consider a firm that has a higher abatement cost and thus wants

to buy permits. In the presence of transaction costs, this firm saves fewer permits in Phase

I instead of buying permits from the market. By contrast, consider firms that want to sell

permits in the frictionless setting. These firms may prefer to save permits due to the frictions.

The aggregate impact of the transaction cost on banking is thus ambiguous. The result in

Figure 6 shows that the former channel is stronger. Many firms save fewer permits in Phase

66One might interpret this counterfactual simulation as the case in which the regulator introduces a fully
efficient centralized auction to allocate emissions permits.

67I utilize the Hotelling rule to solve the market equilibrium without transactions costs. See the Online
Appendix F.1 for more details.

68An alternative approach is to enable firms to endogenously bank permits in the terminal period while
still fixing the fringe supply at the baseline level. This approach ensures that the total quantity of emissions
permits available during the sample period is fixed (not the aggregate emissions level). I also conducted a
simulation using this configuration and found that the results were close to those presented in Column (2) of
Table 5. Specifically, the total emissions amount to 53.13 million tons, with permit banking at the terminal
period amounting to 2.45 million tons. The total cost is $93,025 million, while the total damage amounts to
$40,008 million.
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I due to the transaction costs.

Figure 7 plots the distributions of emissions rates of fuel in the case without transaction

costs and the baseline case. The distribution is more dispersed in the absence of transaction

costs than in the baseline. Eliminating transaction costs makes firms trade more actively,

which in turn makes them more flexible in their compliance. Firms that find it costly to

reduce their own emissions are more likely to purchase emissions permits, whereas other

firms invest more because their revenue from selling permits increases once transaction costs

are removed.

How do these distortions translate into efficiency measures? Table 5 presents the efficiency

measures of the equilibrium outcome with and without transaction costs. With regard to the

total costs of electricity generation and abatement for firms, the table shows that the costs

would be reduced by $814 million.

In addition to the cost-effectiveness, I investigate the net-benefit of the program by

calculating health and environmental damages in Table 5. To do this, I use the estimates of

the marginal damages from SO2 emissions constructed by Muller and Mendelsohn (2009b,

2009a).69 Health and environmental damage decreases by $2.44 billion in the absence of

transaction costs.

To determine the source of reduction in health and environmental damage, I consider the

following decomposition exercise. I denote the total discounted damage by D =
∑2003

t=1995 d̃tEt

where Et =
∑N

i=1

∑Jit
j=1 ejt is the aggregate emission in year t and d̃t is the (discounted)

average damage from emissions in year t. The latter is defined by d̃t = βt−1995
(∑N

i=1

∑Jit
j=1

ejt
Et
dj

)
where ejt is emissions from unit j in year t and dj is the health and environmental damage from

emissions produced by unit j. This measure is interpreted as the weighted average of health

and environmental damages, where the weight is given by the amount of SO2 emissions.70

Then, the change in the aggregate damages from the baseline Dbase to the counterfactual

69Muller and Mendelsohn (2009b) use the APEEP model, an integrated assessment model, to calculate
marginal damages from SO2 emissions at different levels of height at the county level. They also report
the plant-level marginal damage for some plants. This is reported as the damage at the point sources with
an effective height being defined as higher than 500 meters. I use the plant-level damages where possible.
However, if the plant-level damage is not reported, I use the marginal damages from point sources with an
effective height of higher than 250 meters and less than 500 meters (denoted as high point sources). Following
Muller and Mendelsohn (2009b), I assume that damages are linear in SO2 emissions. The emissions damage
from a particular county is given by the product of the marginal damage and the total SO2 emissions from
electricity plants located in the county. While the recent and updated version of the model (namely AP2 and
AP3 models) are available, I choose to use the marginal damages from the original APEEP model because
the sample period of my analysis (i.e., 1995 to 2003) is closer to when the APEEP model was developed. For
the papers that use the AP2 model for calculating the health and environmental damages of air pollutants,
see, e.g., Fowlie and Muller (2013) and Chan, Chupp, Cropper, and Muller (2015).

70For the detailed derivation of the discounted average damage d̃j , see the Online Appendix D.4.
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scenario Dcf can be decomposed as follows:

Dcf −Dbase =
2003∑
t=1995

d̃t
cf
Ecft −

2003∑
t=1995

d̃t
base

Ebaset

=
2003∑
t=1995

(
d̃t
cf − d̃t

base
)
Ecft +

2003∑
t=1995

(
Ecft − Ebaset

)
d̃baset . (5.1)

The first term
∑2003

t=1995

(
d̃t
cf − d̃t

base
)
Ecft is the change caused by the intra-temporal

(cross-sectional) distribution of emissions. Since d̃t is the weighted average of damages across

generating units, it depends on the geographic distribution of emissions in each scenario.71

Meanwhile, the second term
∑2003

t=1995

(
Ecft − Ebaset

)
d̃baset reflects the change in the inter-

temporal distribution (i.e., aggregate emissions Ecft and Ebaset in each year).

Table 6 reports the results of the decomposition exercise. The first term in Equation

(6) accounts for $1.990 billion and the second term $447 million. Figure 8 shows the

aggregate emissions in each year across different scenarios. Without transaction costs, the

early abatement (i.e., lower emissions in Phase I) is achieved and thus contributes to the

lower discounted damages from SO2 emissions, as shown in Figure 8. Another key channel

is the change in geographic distribution of SO2 emissions. SO2 emissions are known as non-

uniformly mixed pollution; health and environmental damages depend on the location of the

emissions’ source. The result suggests that more active trading of emissions permits leads to

greater emissions in regions where the health damage is lower.

Figure 6: Permit Banking with and without Transaction Cost
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71The difference between d̃t
cf

and d̃t
baseline

comes from the weight term
ejt
Et

, which reflects the cross-sectional
distribution of emissions across generating units.
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Figure 7: Distribution of Emissions Rate with and without Transaction Costs
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Table 5: Welfare Implications from Policy Simulations

(1) Baseline (2) Cost-effective (3) No Banking (4) Emissions Tax

Emissions (1 million tons) 52.71 (1.27) 52.71 (1.27) 52.38 (1.07) 52.71 (1.27)
Banking at the terminal (1 million tons) 2.86 (1.12) 2.86 (1.12) 2.49 (0.86) n.a. n.a.

Total costs ($1 million) 93882 (210) 93068 (137) 94207 (210) 93109 (137)
Change from baseline ($1 million) -814 (170) 325 (24) -773 (170)

Total damages ($1 million) 42131 (1038) 39694 (962) 43054 (867) 39026 (946)
Change from baseline ($1 million) -2437 (287) 923 (308) -3105 (290)
Average damage ($1 per 1 ton) 799 (5) 753 (0) 822 (4) 740 (0)

Notes: The numbers are the totals from 1995 to 2003. The units for emissions, left-over
permits, and banking at the terminal period are 1 million SO2 tons. Standard errors of
simulation results are reported in parentheses.

Table 6: Decomposition of the Change in Health and Environmental Damages

Cost-effective No Banking b.w. Phases Emissions Tax

(1) Intra-temporal effect: Average damage -1990 -325 -1937
(2) Inter-temporal effect: Timing of emissions -447 1247 -1169
Total -2437 923 -3105

Notes: The first and second rows refer to
∑2003

t=1995

(
d̃t
cf − d̃t

base
)
Ecft and∑2003

t=1995

(
Ecft − Ebaset

)
d̃baset in Equation (5.1), respectively. The unit is $1 million.
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Figure 8: Path of Aggregate Emissions across Different Scenarios
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5.2 Implications of the Permit Banking

A key feature of the Acid Rain Program is the permit banking system and the per-announced

schedule of permit allocation, which decreased from Phase II (2000). To investigate how the

permit banking system affects equilibrium outcomes, I simulate the case in which permit

banking between Phases I and II is not allowed. In this simulation, firms cannot carry over

emissions permits from 1999 to 2000, but they can bank in other years. This setting mimics

the institutional setting of the EU–ETS.72 Again, I fixed the level of fringe supply in this

simulation.

Table 5 shows that the permit banking reduces the total production cost by $325 million.

The larger welfare gain is achieved through the reduction in environmental damages. The

permit banking reduces the damages by $923 million. The change in the damage is mostly

due to the shift in the timing of emissions. Applying the decompression of Equation (5.1), I

find that the decrease in health and environmental damages stems from the change in the first

term in Equation (5.1). Permit banking achieves the earlier reduction of emissions (i.e., the

lower level of emissions in Phase I), and thus, the discounted damage is lower.73 The average

health damage does not vary drastically from the baseline, indicating that the geographic

distribution of SO2 emissions is not greatly affected by the permit banking.74

72In the EU–ETS, permit banking between Phase 1 (2005–07) and Phase 2 (2008–12) was not allowed.
73An important caveat regarding this analysis is the assumption of calculating the SO2 damages. Specifically,

I assume that the damage from SO2 is linear with respect to emissions by following the assumption of Muller
and Mendelsohn (2009b). If I consider the nonlinear effects of damages from SO2 emissions, the benefit of
early reduction would be larger. The benefit of the early abatement of emissions in my analysis is a result of
the discounting of the damages. Thus, my calculation of the benefit of early abatement should be taken as a
lower bound. I believe this would be a fruitful extension of the analysis.

74The total amount of emissions over the period is slightly smaller in this simulation than that of other
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5.3 Emissions Tax as an Alternative Policy

In this subsection, I simulate emissions tax policy as an alternative to cap-and-trade regulation.

Instrument choice in environmental regulation has been an important topic in policy debate

and academic literature since the work of Weitzman (1974). In the context of this paper,

emissions tax has both advantages and disadvantages over cap-and-trade. On the one hand,

emissions tax is not subject to the presence of transaction costs. As long as firms fully

consider emissions tax as the shadow cost of emissions, the marginal abatement cost would

be equalized across firms. On the other hand, emissions tax does not necessarily allow for

the inter-temporal smoothing of abatement costs. Under an emissions tax policy with a fixed

tax rate, firms make their abatement decisions so that the marginal abatement cost remains

constant over time and is equal to the tax rate. However, when permit banking is permitted,

as demonstrated in Equations (3.8) and (3.9) in Section 3.4, the marginal abatement cost

increases at the rate of the inverse of discount factor (i.e., β−1). This indicates that firms

can spread out their abatement costs across periods and achieve a more gradual increase in

their abatement costs.75

In this exercise, I simulate the impact of an emissions tax policy. To make a fair

comparison between cap-and-trade and emissions tax, I set the emissions tax that achieves

the same level of aggregate emissions in the baseline cap-and-trade policy.76 One important

caveat is that this counterfactual exercise does not aim to address the original “price vs.

quantity” argument proposed by Weitzman (1974).77 Instead, the primary goal of my analysis

is to compare the welfare outcomes of these two policies that are not equivalent due to

transaction costs and permit banking.

Table 5 shows that the total cost under the constant emissions tax policy is $93.10 billion.

This number is comparable the one under cost-effective outcome ($93.07 billion). This result

simulations. Specifically, the discrepancy in the total amount of emissions between these two simulations is
0.6%. Therefore, I believe it would not affect the qualitative conclusion of the analysis. There are two reasons
why this is the case. First, some emissions permits expire between Phase 1 and Phase 2 because I do not allow
for the banking between two phases in this setting. Specifically, the remaining permits must expire if a firm
does not participate in permit trading (i.e., a firm cannot sell permits). Even though the firm participates,
the marginal revenue from selling permits could be less than zero, owing to transaction costs. Firms do not
sell all of their remaining permits in such a case. Another reason is that the amount of banked permits at the
terminal period (i.e., 2003) is different between the baseline and the non-banking simulation.

75Note that this argument depends on the schedule of emissions tax. In the emissions tax simulation, I
consider the constant tax rate over time. The simulation of eliminating transactions costs in Section 5.1 can
be interpreted as a time-varying emissions tax policy in which the tax rate increases at the rate of β−1 (i.e.,
the Hotelling rule).

76In the simulation, the continuation value function is needed because it depends on the scrubber rate and
thus it affects the scrubber decision. Therefore, I need to set the level of permit banking in 2003 that appears
in the continuation value function. Here I set the level at the one in the baseline case.

77The key focus of Weitzman (1974) is the role of the uncertainty in abatement costs and benefits, which
makes (static) cap-and-trade (i.e., quantity instrument) and emissions tax (i.e., price instrument) no longer
equivalent. Specifically, Weitzman (1974) shows that the relative slopes of the marginal abatement cost
curve and the marginal benefit curve determine the comparative advantage of price instrument over quantity
instrument. As discussed in 6.2, the current model has assumed away the uncertainty in the abatement cost,
so I cannot directly address this point in the existing framework. I believe this exercise would be valuable as
a future extension.
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has two implications. First, the emissions tax policy is a useful tool that can achieve a similar

degree of cost-effectiveness as that produced under cap-and-trade without transaction costs.

The second implication pertains to the value of permit banking. Theoretically, the difference

between the emissions tax and the cost-effective cap-and-trade is reduced to the presence of

permit banking. The above result suggests that permit banking does not significantly improve

the cost-effectiveness. However, as I discuss in Section 5.2, the permit banking improves the

cost-effectiveness significantly when transaction costs do exist. These findings imply that the

permit banking system mitigates the negative effect of transaction costs in cap-and-trade.

Regarding health and environmental damages, the emissions tax policy yields the smallest

damage of $39.03 billion among the four scenarios. As shown in Table 6, this reduction in

damages is primarily attributed to the inter-temporal channel. Under the emissions tax

policy, aggregate emissions during Phase I (1995-1999) were the lowest, while those during

Phase II (2000-2003) were the highest, resulting in a lower discounted value of the aggregate

damages over the sample period.

6 Caveats and Limitations

This section discusses some of the caveats and limitations of the paper. In particular, I discuss

(1) modeling of production decision for power plants, (2) assumption of perfect foresight, (3)

implications of the rate-of-return regulation on my analysis, and (4) policy design of permit

allocation rule.

6.1 Model of Production Decision

This subsection provides further justifications for the exogenous electricity assumption and

its drawbacks and implications for the analysis. As discussed in Section 3.2.2, I assume

exogenous electricity production, implying that the unit-level electricity generation qjt is

fixed at the observed level. This assumption is based on the discussion in Section 2.3.2 that

the reduction of output is not a major margin of emissions abatement. This approach also

follows that adopted in previous studies including Carlson, Burtraw, Cropper, and Palmer

(2000), Fowlie (2010b), and Chan (2015), where the primary margin of abatement is reducing

the emissions rate by changing coal quality or adopting abatement technology.

However, this approach suffers from some drawbacks that are worthy of discussion. First,

the exogenous production assumption does not consider the reallocation of productions

across generating units as an abatement option. Specifically, introducing cap-and-trade

could increase the marginal cost of generation by penalizing its SO2 emissions, leading

to lower utilization of coal units and higher utilization of gas units. Secondly, my model

implicitly assumes away competition in the output (electricity) market.78 This implies that

78Some papers have studied the interaction between market competition in the output market and
environmental regulation (Mansur, 2007; Fowlie, 2009; Fowlie, Reguant, & Ryan, 2014). Incorporating
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the electricity price does not change with the introduction of cap-and-trade.

To assess the importance of these concerns and the validity of my approach, I conduct an

extensive descriptive analysis. The details and results can be found in the Online Appendix

A. First, in the Online Appendix A.1, I run a difference-in-differences regression to estimate

the impact of the introduction of cap-and-trade on the utilization rate of generating units. I

found that the utilization rate decreased by only 0.6–3.8 percentage points after a cap-and-

trade program was introduced. This finding is consistent with the previous argument that

the primary method of emissions abatement centers around the reduction of the emissions

rate.

Secondly, I examine how cap-and-trade could affect electricity prices. In the Online

Appendix A.2, I conduct a regression analysis to determine the effects of the Acid Rain

Program on output prices. The effects are both economically and statistically insignificant

(see Table A2). This finding might be because the increase in the marginal cost due to cap-

and-trade is limited. Table A3 in the Online Appendix shows that the permit cost (i.e., the

cost of SO2 emissions evaluated at the observed price of emissions permits) accounts for only

6.2–7.9% of the marginal cost of coal units.79

Lastly, I examine the reallocation of electricity generation across units in the Online

Appendix A.3. Following the literature (e.g., Borenstein, Bushnell, and Wolak (2002),

Bushnell, Mansur, and Saravia (2008), and Asker, Collard-Wexler, and De Loecker (2019)),

I construct a simple model of the production decision and conduct a simulation analysis.

In the model, a generating unit has a constant marginal cost and can produce output up

to its capacity. The firm utilizes its generation units from the lowest to the highest cost

of generation. The marginal cost of electricity generation is the sum of the fuel cost and

the cost of SO2 emissions. The latter depends on the shadow value of emissions permits. I

explore how the shadow value of emissions permits affects the allocation of production across

units. I find that the share of coal and gas units is almost constant with the shadow values

(see Figure A2). This result is a consequence of the significant difference in the marginal

cost across coal and gas units (see Table A3). On the other hand, the reallocation within

coal units (from dirtier coal units to cleaner coal units) may occur to some extent when the

imperfect competition in the output market would complicate the analysis in several aspects. First, I
would need to consider the impact of environmental regulation on consumer surplus in the electricity
market. As Buchanan (1969) has observed theoretically and Fowlie, Reguant, and Ryan (2014) have
discussed empirically, the introduction of corrective tax (i.e., Pigouvian taxation or equivalently cap-and-trade
regulation) exaggerates the welfare loss that already exists due to market power. Secondly, market structure
affects a firm’s abatement incentive. With market power, firms may prefer to abate emissions by reducing
output because such output reduction is partially mitigated by an increase in output price. Furthermore,
imperfect competition in the output market will affect abatement incentives through coal quality choice and
a scrubber. However, on aggregate, the implications of imperfect competition on aggregate emissions are
ambiguous, as noted by Mansur (2007). The aggregate impact depends on technology substitution between
dominant firms and fringe firms. I leave this issue open for future work.

79I also construct a state-level merit-order curve to see the probability of being marginal units. The
percentage of coal units being marginal is around 81%. While this finding might concern that the introduction
of the cap-and-trade could affect the output price determined by the marginal unit on a merit-order curve, its
magnitude is limited given that the permit cost is relatively small compared to the fuel cost.
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shadow value of permits increases (see Figure A3).

While this descriptive analysis supports my modeling approach regarding production

decisions, it is worth examining how relaxing this assumption would affect my results. Since

this assumption excludes one abatement option (i.e., decreasing electricity generation), the

abatement cost implied from my model is larger. In the context of the Acid Rain Program and

SO2 abatement, however, I believe this bias should be limited because the major abatement

option is fuel switching and installing a scrubber. On the other hand, if I consider applying my

framework to CO2 regulations, I would need to incorporate a richer production decision model

into the framework because the production reallocation is an essential margin of emissions

reduction in the CO2 emissions.

6.2 Perfect Foresight and No Aggregate Uncertainty

My framework assumes away the aggregate uncertainty regarding profit πt, namely, electricity

demand and production costs.80 Under this assumption, the permit prices Pt are deterministic

objects in equilibrium and therefore firms should have perfect foresight over permit prices.

Thus, the state variables that appear in a dynamic decision problem are permit holding hit,

trading experience Iit, and the firm-level removal rate of a scrubber αit.
81

Although perfect foresight is certainly a strong assumption, it is often imposed to keep

tractability of the analysis in dynamic structural estimation (see, e.g., Lee, 2005; Conlon,

2012; Igami, 2017). This subsection discusses the difficulty in incorporating aggregate uncertainty

in my model and the potential implication for my analysis.

The difficulty in incorporating a stochastic transition of demand, costs, and permit prices

can be attributed to the dimensionality of the state space. In addition to (hit, Iit, αit), I

would have to consider the transition of the profit function πit and the permit price Pt.
82

Because my framework incorporates the rich heterogeneity of regulated firms, I must solve

the dynamic optimization problem separately for each firm.83 Therefore, expanding the state

80I also assume perfect foresight with regard to the permit allocation ait. This assumption reflects the fact
that the permit allocation schedule was announced before the Acid Rain Program started and did not change
during my sample period.

81The value function Vt is indexed by time script t and subsumes the exogenous state variables.
82If I rewrite the profit function as πit

(
{qjt, Rjt}Jitj=1

)
≡ πi

(
{qjt, Rjt}Jitj=1;Dt, Ct

)
, where Dt is the aggregate

demand shock and Ct is the aggregate cost shock, the additional state variables are (Dt, Ct, Pt), yielding six
state variables.

83A theoretical study by Schennach (2000) analyzes cap-and-trade programs in a dynamic environment with
uncertainty by adopting a social planner’s approach. When permit trading is allowed without any frictions
(i.e., transaction costs and information asymmetry), the decentralized outcome of cap-and-trade is equal to
the social planner’s solution that allocates emissions permits efficiently and minimizes the total abatement
costs. Thus, the paper can reduce the dynamic decision problems of heterogeneous firms into a single social
planner problem. Moreover, the Coase theorem implies that the distribution of initial allocation and permit
holding does not affect the abatement outcomes. Thus, the distribution of permit holding is not needed to be
tracked as a state variable and the dimensionality of the state space is lower. This approach, however, cannot
be applied once I depart from the basic assumptions in Schennach (2000). In my paper, transaction costs do
not allow me to follow such a social planner’s approach. See also Cantillon and Slechten (2018), who show
that the social planner approach may not apply when there is asymmetric information about abatement costs.

45



space would make it extremely difficult to compute and estimate the model.

Another issue relates to how to model the transition of equilibrium permit prices, which

is conceptually and computationally difficult. With the aggregate uncertainty of demand

and costs, the equilibrium permit prices become random variables. Thus, firms must form

an expectation regarding future equilibrium permit prices. In a rational expectation, firms

must track all information that forecasts the future permit prices Pt+1. Permit prices are

determined by the trading decisions of all firms in equilibrium. Therefore, in principle, firms

must have knowledge of the cross-sectional distribution of the state variables in the state space

in order to form a rational expectation of future permit prices. Because there are 138 firms in

my sample, this approach would be infeasible due to the curse of dimensionality. This issue

has been observed before in the literature by Krusell and Smith (1998) on a heterogeneous

macro model, Lee and Wolpin (2006) for the structural estimation of a general equilibrium

labor model, and Gillingham, Iskhakov, Munk-Nielsen, Rust, and Schjerning (2015, 2019) for

a dynamic demand model for new and used car markets.

Given these complications, I choose to assume perfect foresight. Thanks to this assumption,

the model can incorporate firm heterogeneity, which is an important consideration in the

analysis of cap-and-trade, while still being tractable for estimation and simulation analyses.

Such a simplifying assumption, however, is not completely innocuous. I discuss how this

assumption affects the model prediction and thus policy simulations.

The assumption would affect the model prediction of scrubber investment and permit

banking. As Dixit, Dixit, and Pindyck (1994) note, the degree of uncertainty, along with

the irreversible nature of investment goods, reduces the level of investment. Thus, my model

predicts over-investment in a scrubber. Secondly, with uncertainty, regulated firms bank

more permits due to the precautionary motive, in addition to the inter-temporal smoothing

of abatement costs, as was highlighted by my model.

In policy simulations, the improvement of cost-effectiveness due to the permit banking

system would be underestimated under perfect foresight. Faced with uncertainty, though,

firms have additional incentives to bank permits because they need to hedge future uncertainty.

Thus, the role of permit banking in improving the cost-effectiveness would be more significant

under uncertainty. The cost-saving due to the permit banking in my analysis can be considered

as the lower bound.

Extending my framework to incorporate uncertainty is a challenging task yet it provides

a fruitful direction to analyze the implications of cap-and-trade. Recent cap-and-trade

programs struggle with the uncertainty that stems from various factors (see, e.g., Borenstein,

Bushnell, Wolak, and Zaragoza-Watkins, 2019). I leave this matter open to future research.
84

84There are two potential approaches to deal with this problem. The first approach, taken by Gillingham,
Iskhakov, Munk-Nielsen, Rust, and Schjerning (2015), is to use the concept of temporary equilibrium. This
approach assumes that firms have stationary expectations of future prices of emissions permits; in other
words, firms expect permit prices tomorrow to be the same as they are today. Under this expectation, the
equilibrium prices of permits are computed such that the markets are cleared in every period. The other
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6.3 Rate-of-Return Regulation

The analysis in this paper does not explicitly consider the presence of public utility regulation

(i.e., rate-of-return regulation). The literature has examined how a public utility regulation

affects the outcomes of market-based environmental regulations. Such analysis includes the

Averch–Johnson effects on compliance decisions (Fowlie, 2010b in the NOx regulation and

Cicala, 2015 in the SO2 regulation), the regulatory uncertainty associated with the cost-

recovery rule of permits (see, e.g., Montero, 1998 and Arimura, 2002), and inefficiency

in production decision (Abito, 2020). To fully account for these points, I would need to

incorporate the rate-of-return regulation, which adds further complications to the model.85

I discuss the potential impacts of the rate-of-return regulation on my analysis in terms

of the Averch–Johnson effects and inefficiency in production decisions.86 First, the Averch-

Johnson effects imply that the regulated utilities tend to invest in capital-intensive equipment

to expand their rate base. In the current context, the utilities prefer to install a scrubber

instead of trading permits for their compliance purpose. Thus, the model that assumes away

the Averch-Johnson effect would under-predict installment of a scrubber. Secondly, Abito

(2020) shows that the rate-of-return regulation would distort incentives to operate in an

efficient manner. Such sub-optimal behavior would lead to higher abatement costs, which

implies that the model that ignores this effect would lead to lower abatement costs.

6.4 Policy Design of Permit Allocation Rule

Investigating the implications of the permit allocation rule is worthwhile according to my

framework. The Coase theorem states that, in the absence of transaction costs and other

conditions being satisfied, the way the regulator allocates emissions permits at the beginning

does not affect the equilibrium outcome of emissions.87 This does not hold true in my

setting, however, due to the presence of transactions costs. Thus, the initial allocation of

permits affects equilibrium outcomes and the welfare implications of cap-and-trade policy.

Analyzing the optimal allocation policy in the current framework is an interesting extension.

approach, followed by Krusell and Smith (1998), parameterizes the expectation of future permit prices as a
function of a small set of “sufficient statistics,” such as the aggregate demand shock, cost shock, and permit
prices in the current period. It then determines the parameters of the expectation process that yield the
smallest excess demand of emissions permits across periods. The drawback of this approach is that, although
consumers have expectations about future permit prices that are consistent with realized prices, the market
clearing may not be satisfied in a given period.

85See Lim and Yurukoglu (2018), who structurally estimate a model of rate-of-return regulation in a dynamic
setting.

86The regulatory uncertainty in the cost-recovery rules has a nuanced impact on permit trading. On the
one hand, if the regulated utilities can include the cost of purchasing permits in the rate base and their
allowed rate of return is higher than their cost of capital, utilities are encouraged to purchase permits for
their compliance. On the other hand, many public utility commissions were unclear regarding their policies
toward permit trades in their cost recovery rule, which discourages utilities from relying on permit trading as
a compliance strategy. See, e.g., Montero (1998) and Arimura (2002) for further discussions.

87For example, Footnote 1 in Fowlie and Perloff, 2013 provides the detailed conditions for the Coase theorem
to be satisfied. See e.g., Hahn and Stavins (2011) for a survey of the implication of allowance allocations in
cap-and-trade regulation.
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However, this is not a straightforward exercise. Indeed, numerically analyzing the optimal

initial allocation would be infeasible because the number of choice variables (i.e., the initial

permit allocation for each firm) is too high.88 Therefore, a theoretical approach is required

to study the optimal design of initial permit allocation under the presence of transactions

costs in a dynamic framework. I leave this for future work.89

Another policy design that may improve the cost efficiency of cap-and-trade is “depreciating

permits,” which was initially proposed as the depreciating license mechanism by Weyl and

Zhang (2018). Under the depreciating permits system, the regulator collects a certain fraction

of banked permits at the end of the period and then reallocates them through auctions. As

a result, firms have a greater incentive to trade in the market, owing to the depreciation,

but can still smooth their abatement costs over time using permit banking. Although this

is an interesting extension, implementing this policy model requires additional modeling and

consideration. The key to depreciating license mechanism, according to Weyl and Zhang

(2018), is to reallocate depreciated license through an auction mechanism, which requires

additional modeling in my framework.

These two policy counterfactual simulations are a fruitful extension of the paper, though

they require additional considerations. I therefore leave this topic open for further discussion

in future work.

7 Conclusion

This study examines the dynamic incentives of firms regulated by a cap-and-trade program in

the context of SO2 emissions regulations in the US electricity industry. I construct a dynamic

equilibrium model of a cap-and-trade program, in which firms make decisions regarding

abatement investment, permit trading, and banking. I apply the model to data from the

US Acid Rain Program and estimate the model primitives. My estimates suggest that the

variable transaction costs associated with permit trading are substantial. Through policy

simulations, I find that the total costs could be reduced by $814 million in total without any

transaction costs. This additional cost saving is achieved by more active trading of permits

and a more cost-effective pattern of abatement. The emissions tax policy can achieve the

outcome closer to the cost-effective one. Lastly, I examined the role of a permit banking

system, finding that it helps firms to mitigate the negative effect of transactions costs. Indeed,

permit banking induces earlier abatement of emissions, which contributes to lower health and

environmental damages.

88In principle, I could search for an initial allocation that minimizes some objective function (i.e., the total
abatement costs, the health and environmental damages, or the sum of these two). Such computation, however,
would be infeasible for the following two reasons. First, the number of choice variables is too high, as I need
to consider firm-level initial allocation in each phase. Second, to evaluate the outcome under a particular
candidate of initial allocation, I must solve a dynamic competitive equilibrium.

89Fowlie, Reguant, and Ryan (2016) empirically study the implications of an initial allocation scheme under
the presence of market power and emissions leakage.
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The proposed framework can be applied beyond a cap-and-trade program on air pollutants.

Governments now use a market-based policy in various settings, including credit trading in

the CAFE regulation and Renewable Energy Certificates in the Renewable Portfolio Standard

(RPS).90 Under these policies, firms face a similar problem to that examined here: they can

either trade these credits, or invest in technology (i.e., improve fuel efficiency in the CAFE

credit trading, or build renewable generators in the RPS program). The proposed empirical

framework can be used to study the effectiveness of these market-based policies and the

implications of alternative regulatory designs. Future research can further develop these

topics.
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Appendix For Online Publication

Dynamic Incentives and Permit Market Equilibrium in Cap-and-Trade Regulation

Yuta Toyama

A Online Appendix: Supplemental Analysis on Electricity

Production Decision

In this Appendix, I provide a descriptive and simulation analysis on electricity production

decisions. The purpose of these analyses is to examine the validity of exogenous production

assumption in the structural model. Section 6.1 in the main body of the paper presents

a summary of these analyses. Below, however, I provide their details. First, I conduct the

difference-in-differences analysis to determine how the introduction of the Acid Rain Program

affects the electricity generation in . Then, I run the regression analysis to estimate how the

output prices respond to the regulation in A.2. Lastly, I examine the effect of the Acid

Rain Program on the reallocation of production across generating units by constructing a

merit-order curve in A.3.

A.1 Difference-in-differences Analysis on Electricity Generation

This section conducts a difference-in-difference (hereafter DID) regression to examine how the

introduction of the Acid Rain Program affects the electricity production. To do this, I exploit

the variation in the timing of the regulation across generating units. As was mentioned in

Section 2.1, there are two groups of generating units: those regulated since 1995 (Group I

units) and those regulated since 2000 (Group II units). Figure A1 shows the average capacity

factor for each group each year.

While the data cover the period until 2003, all the units are treated (i.e., regulated) from

2000, implying that there are no control units after 2000. Following the practice in the recent

DID literature (i.e., Goodman-Bacon 2021; Callaway and SantAnna 2021; Sun and Abraham

2021), I restrict the sample to the period between 1990 and 1999.91

I specify the regression equation as follows:

Yjm = αGroupIj · 1{after1995}m + β′Xjm + uj + um + ujm,

where Yjm is the outcome variable of unit j in year-month m. I use as the main outcome

variable capacity factor defined by cfjm = qjm/kj , where qjm is the net generation and kj is

91Using the terminology of the recent DID literature, there are no “never-treated” units in the sample. The
difference-in-difference regression using the sample after 2000 compares the Group II units with the Group I
units, which are “already treated” units and thus are not adequate control units for the Group II units. See
Goodman-Bacon 2021; Callaway and SantAnna 2021; Sun and Abraham 2021 for the details.
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the nameplate capacity. GroupIj is the dummy variable for the Group I units. 1{after1995}m
is the dummy variable that indicates the periods after 1995 (the beginning of Phase I). Xjm

includes control variables such as the state-level electricity demand. Unit and time fixed

effects are captured by uj and um, respectively.

It is worth explaining the interpretation of the DID estimate of α. To estimate it, I

compare the change in the utilization rate of the Group I units before and after 1995 and the

change of the Group II units. Once the regulation is introduced in 1995, the Group I units

have a higher marginal cost of generation due to the opportunity cost of SO2 emissions under

cap-and-trade. Such a cost increase might induce lower utilization of the Group I units.

However, the Group II units could also change their electricity production via production

reallocation. Specifically, the firm may reallocate the electricity production from Group I to

Group II. Therefore, the DID estimate of α should be interpreted as an upper bound of the

regulation effect on the Group I units.

The regression results are shown in Table A1. The estimates suggest that introducing the

ARP decreases the capacity factor of group I units by 0.6–3.8 percentage points, depending

on the choice of units in the control group. Although the effects are statistically significant, as

shown in column (1), the economic significance is limited. Because the mean of the capacity

factor falls within the range of 50–60 percentage points in the sample, electricity generation

fell by at most 7.6% after the introduction of the cap-and-trade program. As shown in

Section 2.3.1, this magnitude cannot account for the significant decrease in SO2 emissions in

the sample period. Instead, the adjustment of emissions rate of fuel, as discussed in Section

2.3.2, is the key channel of SO2 abatement. The difference-in-differences analysis confirms

that the abatement of SO2 emissions was achieved primarily through adjusting emissions rates

of fuel. This finding supports my modeling assumption of exogenous electricity production.
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Figure A1: Trend of Capacity Factor of Group I and Group II units
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Notes: The figure shows the trend of the capacity factor, defined by the ratio of net generation
(output) to generation capacity, over time. I calculate the mean of the monthly-level capacity
factor in each year for three groups: units regulated since 1995 (denoted as Group I), coal
units regulated since 2000 (denoted as Group II (Coal)), and gas and oil units regulated since
2000 (denoted as Group II (Gas and Oil)).

Table A1: Difference-in-differences Regression of Capacity Factor

Dependent variable:

Capacity factor

(1) (2)

Treatment −3.823 −0.643
(0.633) (0.568)

log(Electricity Demand)) 38.481 42.705
(1.698) (1.182)

Control group Coal only Coal, Gas, and Oil
Observations 127,200 201,960
Adjusted R2 0.527 0.656

Notes: Unit-level dummies and year-and-month dummies are included. Standard errors are
clustered at the unit level.
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A.2 Effects of Acid Rain Program on Output Prices

In this subsection, I examine how output prices change due to the introduction of the Acid

Rain Program. Specifically, I run the following panel regression:

logPst = θZst + us + ut + ust,

where Pst is the output price in state s in month-year t and Zst is a measure of exposure

to the Acid Rain Program. The measure of output price is defined as the average price

for industrial/residential retail customers obtained from the form Form EIA-826 “Monthly

Electric Utility Sales and Revenue Report with State Distributions” Energy Information

Administration (1990–2003). For Zst, I use (1) the number of generating units affected by

the Acid Rain Program in state s and period t, (2) the total generation capacity of units that

are regulated under the Acid Rain Program, and (3) the dummy variable indicating whether

there exists at least one regulated unit in state s and period t. I use the data from 1990 to

2003. Note that there is both cross-sectional and temporal variation in the exposure to the

Acid Rain Program.

Table A2 presents the estimation results. All the columns show that the impact on output

price is both statistically and economically insignificant, which suggests that the introduction

of the Acid Rain Program seems to have a limited impact on output prices.

A.3 Reallocation of Production across Generating Units based on a Merit-

order Curve

I examine how the electricity generation would change if I consider the increase in the marginal

cost of generation due to cap-and-trade. While the model assumes the exogenous electricity

production, the cap-and-trade regulation might change the marginal costs of generation by

incorporating the shadow cost of SO2 emissions and thus the allocation of production across

generating units. To investigate this point, I construct a merit-order curve based on the

marginal cost and the capacity of generating units as well as examining how the shadow

cost of SO2 emissions changes the production pattern (e.g., Borenstein, Bushnell, and Wolak

(2002), Bushnell, Mansur, and Saravia (2008), and Asker, Collard-Wexler, and De Loecker

(2019)). I first introduce a model of electricity generation based on a merit-order curve in

A.3.1 and show the summary statistics of fuel and permit costs in A.3.2. Using the model, I

analyze the reallocation of electricity generation due to the introduction of the cap-and-trade

in A.3.3. Lastly, I examine the extent to which coal units are likely to be a marginal unit in

A.3.4.
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Table A2: Effects of Exposure to the Acid Rain Program on State-level Electricity Price

Dependent variable:

log (output price)

(1) (2) (3)

log(number of regulated units + 1) −0.005
(0.008)

log(capacity of regulated units + 1) 0.0001
(0.002)

1at least one regulated unit 0.023
(0.020)

Observations 9,671 9,671 9,671
Adjusted R2 0.872 0.872 0.872

Note: State FE, Year FE, and Month FE are included. I add one to the inside of the logarithm
because the covariates take 0 if there are no regulated units in a state in a particular time
period. Standard errors are clustered at the state level.

A.3.1 Model

A generating unit can produce electricity with constant marginal cost mcjt up to the capacity

constraint of kj . The marginal cost of unit j in time t is given by

mcjt(λ) = pfueljt ·HRj + λ(1− αjt)Rjt ·HRj .

Notations follow those in the main body of the paper. The first component of marginal cost

pfueljt ·HRj is fuel cost. The second component λ(1−αjt)Rjt ·HRj is the cost associated with

SO2 emissions, which I call permit cost. The permit cost depends on the shadow value of

permit λ. In the absence of transaction costs, the shadow value of emissions permits is equal

to the market price of permits. In the structural model of the paper, the shadow value λ is

endogenously determined due to the presence of transaction costs and permit banking.

I consider two approaches that endogenize the decision on electricity generation. First, I

consider the cost minimization problem for each firm given their firm-level output. In period

t, the firm decides the production allocation across generating units to minimize their total

cost:
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min
{qjt}

Jit
j=1

Jit∑
j=1

mcjt(λ) · qjt

s.t.

Jit∑
j=1

qjt = Q, qjt ∈ [0, kj ]

Note that the total output at the firm level Q is exogenously given.

Without loss of generality, I order the generation units i = 1, · · · , N according to increasing

marginal costs, i.e., mc1t(λ) ≤ mc2t(λ) ≤ · · · ≤ mcJt(λ) in each period t. Then, the optimal

choice of production allocation is given by

qj =


kj if j = 1, . . . , J∗ − 1

Q−
∑J∗−1

j=1 kj if j = J∗

0 if j = J∗ + 1, . . .

where J∗ is the minimum number of generating units whose total generation capacity exceeds

the given amount of total generation Q, i.e.,

J∗ = arg min

J
∣∣∣∣∣∣
J∑
j=1

kj ≥ Q

 .

Intuitively speaking, the firm operates the generation units with cheaper costs until it satisfies

the total demand of Q.

I also construct a merit-order curve at the state level. Let Jst be the set of generating

units located in state s. Then, given the state-level generation Qst, the cost minimization

problem is given by

min
{qjt}j∈Jst

∑
j∈Jst

mcjt(λ) · qjt

s.t.
∑
j∈Jst

qjt = Qst, qjt ∈ [0, kj ].

The solution to this problem is similarly given as that for the firm-level problem.

A.3.2 Descriptive Statistics of Fuel and Permit Cost

Before I analyze the endogenous response of electricity generation to cap-and-trade, I first

report the descriptive statistics of the marginal cost in Table A3. To do this, I decompose

the marginal cost into the fuel cost and the permit cost. To calculate the permit cost, I

use the market price of emissions permits as shadow cost λ. I report the decomposition for
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three groups of generating units. First, the permit cost accounts for 7.9% and 6.2% of the

marginal cost for Group I and Group II (coal). These numbers suggest that the introduction

of cap-and-trade does not significantly increase the marginal cost of generation. Secondly,

even if I consider the permit cost associated with SO2 emissions, the marginal cost of coal

units is substantially higher than that of gas and oil units.

Table A3: Summary Statistics of Fuel and Permit Cost

Variable Mean Std. Dev. 25 Percentile Median 75 Percentile

Group: Group I
Fuel cost 16.29 15.55 11.41 13.16 15.97
Permit cost 1.39 1.19 0.52 1.08 1.93

Group: Group II (Coal)
Fuel cost 13.99 5.82 11.31 13.42 15.93
Permit cost 0.93 0.81 0.45 0.73 1.21

Group: Group II (Gas and Oil)
Fuel cost 54.58 48.37 35.59 46.65 59.71
Permit cost 0.17 0.41 0 0 0.04

Note: The unit is USD per MWh. The permit cost is the shadow cost of SO2 emissions
evaluated by the observed permit price.

A.3.3 Reallocation across generating units

I now use the merit-order curve to investigate the endogenous change in the electricity

generation. Figure A2 plots the share of coal generation as a function of the shadow value

λ. In theory, the higher λ implies the higher costs of permits, leading to lower utilization of

coal units. Although the share of coal generation is indeed decreasing as the shadow value

λ increases, its magnitude is quite small. Even if the shadow value is set at $500, which is

quite high given that the permit price in my sample period is within the range of $100–$200,

the share of coal generation only decreases by 0.2 percentage point in Panel B. The analysis

implies that even though we consider the cost of emissions permits, reallocation of production

across coal and other units (namely gas and oil units) is very limited. This finding is also

consistent with the cost difference between coal and other units, as I discuss in Table A3.
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Figure A2: Share of Coal Generation
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Panel B: Merit Order Curve at State

I then investigate the reallocation of generations within coal units. Figure A3 illustrates

how the generation share of each group of coal units changes according to the shadow

value of emissions permits. Each group is defined by the quartiles of emissions rate of fuel

(lbs/MMBtu). The lower quartile corresponds to cleaner units (i.e., lower emissions rate of

fuel). The figure shows that reallocation from dirtier (i.e., 4th Quartile) to cleaner (i.e. 1st

and 2nd Quartile) occurs when the shadow value of permits increases. Specifically, when the

shadow value increases from 0 (i.e., no cap-and-trade) to 150 (which is in the ballpark of

the observed permit prices in 2000–2003), the share of the dirtiest group falls from 16.1% to

13.2%, while that of the cleanest group rises from 35.1% to 36.9% in Panel A. This result

indicates that introducing cap-and-trade may lead to the reallocation of generation within

coal units to some extent. However, its magnitude is not sufficient to achieve the required

level of emissions abatement under the Acid Rain Program.
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Figure A3: Possible Reallocation within Coal Units in Phase II

35.1% 35.9% 36.6% 36.9% 37.2% 37.4% 37.6% 37.9% 38.1% 38.3% 38.4%

26.8% 27.3% 27.6% 27.8% 28.0% 28.1% 28.3% 28.4% 28.5% 28.6% 28.7%

22.0% 21.9% 22.0% 22.1% 22.2% 22.2% 22.2% 22.1% 22.1% 22.0% 22.0%

16.1% 14.9% 13.8% 13.2% 12.6% 12.3% 12.0% 11.6% 11.4% 11.2% 10.9%
0%

25%

50%

75%

100%

0 50 100 150 200 250 300 350 400 450 500
Shadow Value

S
ha

re
 o

f E
ac

h 
G

ro
up

 w
ith

in
 C

oa
l U

ni
ts

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Panel A: Firm−level Optimization

35.0% 35.9% 36.5% 37.1% 37.5% 37.9% 38.2% 38.6% 38.8% 39.0% 39.3%

27.3% 27.8% 28.1% 28.2% 28.5% 28.7% 28.8% 28.9% 29.1% 29.2% 29.3%

21.4% 21.5% 21.6% 21.8% 21.9% 22.0% 22.0% 22.1% 22.1% 22.1% 22.1%

16.3% 14.9% 13.9% 12.9% 12.1% 11.5% 10.9% 10.4% 10.0% 9.6% 9.3%
0%

25%

50%

75%

100%

0 50 100 150 200 250 300 350 400 450 500
Shadow Value

S
ha

re
 o

f E
ac

h 
G

ro
up

 w
ith

in
 C

oa
l U

ni
ts

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile
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Note: Quartile is defined by emissions rate of fuel (lbs/MMBtu) observed in the data.
1st quartile: lower than 0.56 lbs/MMBtu, 2nd quartile: higher than 0.56 lbs/MMBtu and
lower than 1.00 lbs/MMBtu, 3rd quartile: higher than 1.00 lbs/MMbtu and lower than 1.70
lbs/MMbtu, 4th Quartile: higher than 1.70 lbs/MMBtu

A.3.4 Marginal Units on a Merit-Order Curve at the State Level

Using a state-level merit-order curve for each month and year, I examine the share of marginal

units. Figure A4 shows the share of marginal units as a function of the shadow value. Overall,

the share of marginal coal units is around 82%, and this figure is almost constant across

different values of the shadow values. Note that the share of coal units that are marginal

is likely overestimated because I construct a merit-order curve using the monthly-level data,

rather than high-frequency data (i.e., hourly-level data available in CEMS).92

This result raises the concern that the introduction of cap-and-trade could affect the

output price determined by the marginal unit on a merit-order curve. Cap-and-trade increases

the marginal cost of coal units due to the additional permit costs, which might be passed

through to the output price. However, I believe this magnitude is likely to be relatively small.

As I have shown in the descriptive statistics presented in Table A3, the permit cost is quite

small compared to the fuel cost. Therefore, the potential impact of cap-and-trade on output

price is likely to be quite small too.

92If I consider the demand fluctuation during the day, the model based on a merit-order curve produces a
period of time when gas and oil units are marginal units.
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Figure A4: Share of Marginal Units
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B Online Appendix: Estimation of Fringe Demand

This subsection explains the estimation of the fringe demand function. I consider the following

linear specification:

B̄fringe
t = κ0 + κ1Pt + κ2Phase2t, (B.1)

where Phase2t is the dummy for Phase II. The permit price Pt is subject to the endogeneity

problem because the equilibrium permit price depends on the aggregate demand from the

fringe firms. Thus, I use the sum of the initial allocation of permits owned by the firms in

my sample as an instrument for Pt. The initial allocation of firms in the estimation sample

is excluded from the fringe demand equation. Moreover, it is the part of the total amount of

permits available in the market and thus affects permit prices. Table A4 reports IV estimates.

Given the few data points available in my data (9 yearly observations from 1995 to 2003), the

price coefficient is rather imprecisely estimated. For a comparison, Table A5 in the Online

Appendix reports the first-stage result and the OLS result.

Table A4: Parameter Estimates of Fringe Demand

Parameter Description Estimate Standard Errors

Fringe Demand B̄t(·) κ0 Constant 630110.45 577998.93
κ1 Permit Price -3424.25 4133.94
κ2 Phase II dummy -270591.92 191833.72
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C Online Appendix: Additional Tables and Figures

Figure A5: Trading Volume over Time
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million permits.

Figure A6: Comparison of volume-weighted mean and median prices of permits.
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Figure A7: Frequency of Trading Normalized by Firm Size
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Figure A8: Scrubber Adoption
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Table A5: Estimation Results of Fringe Demand

OLS 1st Stage IV

(Intercept) 974674.854 447.841 630110.447
(377303.896) (135.208) (577998.931)

Permit Price −5937.203 −3424.250
(2642.120) (4133.937)

Phase2 dummy −216148.484 77.717 −270591.917
(168181.241) (30.112) (191833.720)

Initial Allocation −0.054
(0.024)

R2 0.620 0.531 0.563
Adj. R2 0.494 0.375 0.417
Num. obs. 9 9 9

D Online Appendix: Details of Model Derivation

D.1 Derivation of the Optimality Conditions

In this appendix, I provide a detailed derivation of the optimality conditions for the constrained

optimization problem introduced in Section 3.4. Recall that the constrained optimization

problem is given by

max
{Rjt}

Jit
j=1,bit,hi,t+1

πit

(
{qjt, Rjt}Jitj=1

)
− (Ptbit + TC(|bit|)) + βEVi,t+1(hi,t+1, 1, Ri,t+1)

s.t. eit

(
{qjt, Rjt}Jitj=1, αit

)
+ hi,t+1 = ait + hit + bit,

hi,t+1 ≥ 0.

The Lagrangian for this problem is

L =πit

(
{qjt, Rjt}Jitj=1

)
− (Ptbit + TC(|bit|)) + βEVi,t+1(hi,t+1, 1, Ri,t+1)

+ λit

(
ait + hit + bit − eit

(
{qjt, Rjt}Jitj=1, αit

)
− hi,t+1

)
+ µithi,t+1,

where λit denotes the Lagrange multiplier on the transition of permit holding, eit

(
{qjt, Rjt}Jitj=1, αit

)
+

hi,t+1 = ait+hit+bit, and µit denotes the Lagrange multiplier on the nonborrowing constraint,

hi,t+1 ≥ 0. Taking the first-order conditions, I have

∂L
∂Rjt

=
∂πit

(
{qjt, Rjt}Jitj=1

)
∂Rjt

− λit
∂eit

(
{qjt, Rjt}Jitj=1

)
∂Rjt

= 0 (D.1)

∂L
∂bit

= −Pt −
dTC(|bit|)

dbit
+ λit = 0 (D.2)

∂L
∂bit

= β
dEVi,t+1(hi,t+1, Ii,t+1, Ri,t+1)

dhi,t+1
+ µit − λit = 0 (D.3)

A–14



Equation (3.1) implies that
∂πit

(
{qjt,Rjt}

Jit
j=1

)
∂Rjt

= −∂pfueljt (Rjt)

∂Rjt
HRjqjt and Equation (3.2) implies

that
∂eit

(
{qjt,Rjt}

Jit
j=1

)
∂Rjt

= (1−αjt)HRjqjt. Thus, Equation (D.1) can be written as λit ((1− αjt)HRjqjt) =

−∂pfueljt (Rjt)

∂Rjt
HRjqjt, as shown in Equation (3.6). It is clear to see that Equations (D.2) and

(D.3) can be written as Equations (3.7) and (3.8), respectively. Lastly, the complementary

slackness condition with respect to the banking constraint hit+1 ≥ 0 is given by µithit+1 =

0, µit ≥ 0, hi,t+1 ≥ 0, as is shown in Equation (3.9).

D.2 Derivation of the Participation Probability Pit(hit, αit) and Ex-ante

Value Function EVit(hit, Iit, αit)

Participation probability of Pit(hit, αit) Recall that the participation probability is given

by

Pit(hit, αit) =

∫
1
{
V 1
it(hit, αit)− (F + σF εit) > V 0

it(hit, αit)
}
dG(εit).

Since I assume the type-I extreme value distribution of εit, the participation probability is

given by the well-known logit formula:

Pit(hit, αit) =
exp

(
V 1
it(hit,αit)−F

σF

)
exp

(
V 0
it(hit,αit)
σF

)
+ exp

(
V 1
it(hit,αit)−F

σF

)
Ex-ante value function of EVit(hit, Iit, αit) Recall that the ex-ante value functions are

given by

EVit(hit, Iit, αit) =


∫

max
{
V 0
it(hit, αit), V

1
it(hit, αit)− (F + σF ε)

}
dG(ε) if It = 0

V 1
it(hit, αit) if It = 1.

Under the assumption that ε follows an i.i.d. type-I extreme value distribution, the expected

value function when Iit = 0 can be written as

EVit(hit, Iit = 0, αit) = σF log

[
exp

(
V 0
it(hit, αit)

σF

)
+ exp

(
V 1
it(hit, αit)− F

σF

)]
.

By applying the Williams–Daly–Zachary theorem and the envelope theorem, the derivative

of the expected value function with respect to the state variable hit can be expressed as follows:

dEVt(hit, 0, αit)

dhit
= Pit(hit, αit)λ1

it + (1− Pt(hit, αit))λ0
it. (D.4)

dEVt(hit, 1, αit)

dhit
= λ1

it, (D.5)
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where λ1
it and λ0

it are the Lagrange multipliers on the constraints for permit transitions in

the optimization problems for traders and nontraders, respectively. I now provide a detailed

derivation of the above equations.

Derivation of ∂EVt(ht, It, αt)/∂ht I omit the index i for a firm for ease of exposition. I

focus on the derivation of ∂EVt(ht,0,αt)
∂ht

. Recall that

EVt(ht, 0, Rt) =

∫
max

{
V 0
t (ht, Rt), V

1
t (ht, Rt)− F − σF ε

}
dG(ε).

By the chain rule, I have

dEVt(ht, 0, αt)

dht
=
∂EVt
∂V 0

t

dV 0
t

dht
+
∂EVt
∂V 1

t

dV 1
t

dht
.

First, I derive ∂EVt
∂V kt

for k = 0, 1. This is an application of the Williams–Daly–Zachary

theorem (see Theorem 3.1 in Rust, 1994). Using the interchange of integration and differentiation,

I arrive at the following (I omit ht for ease of exposition in the following derivation):

∂EVt
∂V 1

t

=
∂

∂V 1
t

∫
max

{
V 1
t − F − σF ε, V 0

t

}
dG(ε)

=
∂

∂V 1
t

∫
Υ1

(V 1
t − F − σF ε)dG(ε) +

∂

∂V 1
t

∫
Υ0

V 0
t dG(ε)

=

∫
Υ1

∂

∂V 1
t

(V trade
t − F − σF ε)dG(ε) +

∫
Υ0

∂

∂V 1
t

V 0
t dG(ε)

=

∫
Υ1

dG(ε)

= Pt(·),

where Υ1 is the set of ε such that a firm chooses to participate (i.e., Υ1 ≡ {ε : V 1
t −F −σF ε >

V 0
t }), and Υ0 is defined similarly. Note that I can apply a similar derivation to obtain
∂EVt
∂V 0

t
= 1− P(ht).

Next, I calculate
∂V kt
∂ht

, for k = 0, 1. The derivation is a direct application of the envelope

theorem (or the Benveniste–Scheinkman formula):

∂V k
t

∂ht
= λkt ,

where λkit denotes the Lagrange multipliers in the corresponding optimization problems. Thus,

I obtain

dEVt(ht, 0)

dht
= Pt(ht)λ1

t + (1− Pt(ht))λ0
t .
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D.3 Incentives in Abatement Investment

Here, I discuss how the incentive to invest in abatement is determined in the model. Using

the envelope theorem, the marginal return from increasing the removal rate of a scrubber is

given as follows:

∂EV1995

∂α1
=

1999∑
t=1995

βt−1995

λit · Jit∑
j=1

Rjt ·HRjt · qjt

− β2000−1995 ∂

∂α1
Γ(α2 − α1).

The first term is the returns from emissions abatement evaluated at the shadow value λit.

The second term is the saving of investment costs in Phase II due to the earlier investment

in Phase I.

The primary component in the return on investment is the first term. By increasing the

removal rate of a scrubber, a firm can marginally reduce its emissions by
∑Jit

j=1Rjt ·HRjt ·qjt.
This marginal abatement is evaluated at the shadow value of λit. Thus, the return on

investment is given by the discounted sum of the returns on the marginal abatement. The

path of shadow values λit is key for the investment incentives. As discussed in Section 3.7,

the shadow value λit and equilibrium permit price Pt are affected by both permit banking

and transaction costs.

D.4 Details of Decomposition of Change in Health and Environmental

Damages

The aggregate health and environmental damage is given by

D =

2003∑
t=1995

βt−1995

 N∑
i=1

Jit∑
j=1

djejt

 ,

where ejt is emissions from unit j in year t and dj is the health and environmental damage

from emissions produced by unit j. Note that dj is the county-level estimates of SO2 damage

constructed by Muller and Mendelsohn (2009).

I rewrite the aggregate damage as

D =

2003∑
t=1995

βt−1995Et

(∑N
i=1

∑Jit
j=1 djejt

Et

)

=
2003∑
t=1995

d̃tEt,

where Et =
∑N

i=1

∑Jit
j=1 ejt is the aggregate emissions in year t and d̃t = βt−1995

(∑N
i=1

∑Jit
j=1 djejt
Et

)
is the (discounted) average SO2 damages in year t. Note that d̃t interpreted as the weighted
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average of health and environmental damages, where the weight is given by the amount of

SO2 emissions.

E Online Appendix: Computational Details of Solving the

Model

Appendix E explains the computational procedure used to solve the structural model.

E.1 Decomposition of the Per-Period Problem

One of the choice variables in the individual dynamic decision problem is the unit-level coal

quality Rjt, which appears in the profit function πit, given by Equation (3.1), and the firm-

level emissions, eit =
∑Jit

j=1(1−αjt)Rjt ·HRj · qjt. Because each firm has multiple generation

units, solving unit-level production in a dynamic framework seems computationally demanding.

Therefore, to reduce the computational burden, I decompose the per-period problem into the

following two problems. First, I consider the following optimization problem with respect to

the unit-level coal quality {Rjt}j∈Jit , holding firm-level emissions eit fixed:

Πit(eit, αit) ≡ max{Rjt}j∈Jit
πit

(
{qjt, Rjt}Jitj=1

)
s.t.

Jit∑
j=1

(1− αit)Rjt ·HRj · qjt = eit.

Πit(eit, αit) is the optimal profit as a function of the firm-level emissions eit. Note that the

FOCs for this subproblem are

λsubit ((1− αjt)HRjqjt) = −
∂pfueljt (Rjt)

∂Rjt
HRjqjt

Jit∑
j=1

(1− αit)Rjt ·HRj · qjt = eit,

where λsubit is the Lagrange multiplier of the constraint on firm-level emissions in the above

problem.

I now use Πit(eit, αit) to consider the dynamic decision problem:

max
eit,bit,hi,t+1

Πit(eit, αit)− (Ptbit + TC(bit)) + βEVi,t+1(hi,t+1, 1, Ri,t+1)

s.t. eit + hi,t+1 = ait + hit + bit,

hi,t+1 ≥ 0.

Note that the choice variables are now reduced to eit, bit, and hi,t+1.
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When I numerically solve the individual dynamic decision problem, I follow two steps.

First, I construct Πit(eit, αit) using the unit-level FOC for production. I then use the

precomputed Πit(eit, αit) to solve the individual dynamic decision problems.

E.2 Individual Optimization

I explain the computational procedure for solving an individual problem. For notational

simplicity, I omit the script i for a particular firm. Because the model has a finite period, it

can be solved using backward induction.

1. Phase II (2003 to 2000): I solve the optimization problem from 2003 to 2000. Note that

I use CVT+1(hT+1, α
2) as a continuation value in the terminal period 2003. By solving

with backward induction, I obtain the policy function x̂t(ht, It, α
2) for emissions et, net

purchase bt, and banking ht+1, and the expected value function in 2000 EV2000(h2000, I2000, α
2).

2. Investment decision for Phase II: I define the continuation value at the timing of making

the investment decision for Phase II by W2000(h2000, I2000, α
1). The decision problem is

given by

W2000(h2000, I2000, α
1) ≡ maxα2 EV2000(h2000, I2000, α

2)− Γ(α2, α1).

s.t. α2 ≤ α1

By solving this problem, I obtain the investment policy function α2∗(h2000, I2000, α
1).

3. Phase I (1999 to 1995): I repeat the same procedure as that in step 1. Note that the

continuation value in the problem at t = 1999 is given by W2000(h2000, I2000, α
1).

4. Investment for Phase I: The problem is given by

max
α1

EV1995(0, 0, α1)− Γ(α1, α0).

s.t.α1 ≤ α0

Note that h1995 = 0 and I1995 = 0 in 1995.

E.3 Computation of a Dynamic Competitive Equilibrium

The computational procedure for finding an equilibrium is parallel to the estimation procedure

introduced in Section 4.

1. Fix a candidate of permit prices: P = {Pt}2003
t=1995.

2. Solve the individual problem using backward induction and obtain the policy function

x̂it(hit, Iit, αit) for emissions et, net purchase bt, and banking ht+1, participation probability

Pit(hit, αit), and the investment decisions α1
i (hi1995, Ii1995) and , α2

i (hi,2000, Ii,2000, α
1
i ).
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3. Consider the timing of market participation. Denote the year of participation by s ∈
{∅, 1995, · · · , 2003}. Here, s = ∅ means that a firm does not trade in a period.

4. For each path of participation timing, I simulate the optimal decisions using the policy

functions.

5. Calculate the probability that each path of participation timing is realized.

6. The simulated optimal decisions are given as

x̂it =
∑

s∈{∅,1995,··· ,2003}

Probenteri (s)x̂it(s),

where x denotes the choice variables.

7. Check the market-clearing condition as

N∑
i=1

b̂it(P) + B̄t
fringe

(Pt) = 0 ∀t = 1995, · · · , 2003.

8. Stop the iteration when the following condition is satisfied:

max
t=1995,··· ,2003

∣∣∣∣∣∑
i

b̂it(P) + B̄t
fringe

(Pt)

∣∣∣∣∣ < 1000.

Note that this criterion is sufficiently tight to ensure that the absolute value of the price

change is in the order of magnitude of 1e-1.

9. If the above is not satisfied, repeat steps 1–7 with the updated price vector (explained

below), until the market-clearing conditions are satisfied.

Price Update Rule To update the price in each iteration, I construct the following

heuristic rule that exploits the market-clearing conditions and the optimality conditions.

Denote the current candidate of an equilibrium price vector by Pl = {P lt}2003
t=1995. The next

candidate of price in year t, P l+1
t , is given by solving the following equation:

N∑
i=1

∑
s∈{∅,1995,··· ,2003}

Pi,enter(s) · TC ′(−1)
(
λ̂it(P

l, s)− P l+1
t

)
+ B̄t

fringe
(P l+1

t ) = 0,

where λ̂it(P
l, s) is the prediction of the shadow value when the current price candidate is

Pl and the year of participation is s. Note that at the fixed point of this equation, where

Pl = Pl+1,

TC ′(−1)
(
λ̂it(P

l, s)− P lt
)

= bit(P
l, s),

such that the market-clearing conditions are satisfied in all periods.
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The computation procedure with this price update rule works relatively well in numerical

simulations. The algorithm finds an equilibrium price vector in fewer than 10 iterations in

most cases, though I do not have a formal proof of this property of the algorithm.

F Online Appendix: Details of Counterfactual Simulations

F.1 Eliminating Transaction Costs

I now consider the case with permit banking. In the absence of transaction costs, Rubin

(1996) has shown that the equilibrium path of permit prices grows at the rate of β−1, as long

as the aggregate banking is positive, which implies that

Pt+1 = β−1Pt

⇐⇒ Pt =β−(t−1)P1995 for t ∈ {1995, · · · , 2003}.

The optimal decision on emissions, given the emissions rate of fuel, is determined by

∂πit/∂Rjt = Pt ∀j. As discussed in Section 3.7.2, individual decisions on net purchases

and banking are not determined from the model because the current shadow value λt = Pt

is equal to the discounted marginal value of banking βλt+1 = βPt+1 = Pt. In other words,

banking and trading decisions are arbitrary as long as a firm can produce the level of emissions

determined by the optimality condition.

Now, I consider the investment decisions. The continuation value at the beginning of

Phase II is given by

Vi,2000(hi,2000, α
2
i ) =

2003∑
t=2000

βt−2000
[
πit

(
{qjt}Jitj=1, α

2
i

)
− Ptbit

]
+ β2003−2000CV (hi,T+1)

=

2003∑
t=2000

βt−2000
[
πit

(
{qjt}Jitj=1, α

2
i

)
− Pt · (eit − ait)

]
+β2003−2000 {CV (hi,T+1)− PThi,T+1}

+
2003∑
t=2000

βt−2000Pthit +
2002∑
t=2000

βt−2000Pthit+1

=
2003∑
t=2000

βt−2000
[
πit

(
{qjt}Jitj=1, α

2
i

)
− Pt · (eit − ait)

]
+β2003−2000 {CV (hi,T+1)− PThi,T+1}+ P2000hi,2000,

where the last equality uses the equilibrium relationship βPt+1 = Pt. The investment problem

is
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Wi,2000(hi,2000, α
1
i ) = maxα2

i
V2000(hi,2000, α

2
i )− Γ(α2

i , α
1
i ).

s.t. α2
i ≤ α1

i .

Note that hi,2000 does not affect the optimal investment level of α2
i .

The continuation value at the beginning of Phase I is given as

V1995(hi,1995, α
1
i ) =

1999∑
t=1995

βt−1995
[
πit

(
{qjt}Jitj=1, α

1
i

)
− Pt(eit − ait)

]
+β1999−1995

(
βW2000(hi,2000, α

1
i )− P1999hi,2000

)
.

The investment problem is similar to that in Phase II.

Finally, I consider the market-clearing condition. By aggregating the transition equation

of permit holding (3.3) over individual firms and time, I have

2003∑
t=1995

Et(Pt) +HT+1 =
2003∑
t=1995

At +
2003∑
t=1995

Bt, (F.1)

where Et =
∑N

i=1 eit(Pt), and other uppercase variables are defined similarly. The market-

clearing condition in each period is

Bt + B̄fringe
t (Pt) = 0.

By substituting this condition into Equation (F.1), I have

2003∑
t=1995

Et

(
β−(t−1)P1995

)
+HT+1(β−(T−1)P1995) =

2003∑
t=1995

At +
2003∑
t=1995

−B̄fringe
t

(
β−(t−1)P1995

)
.

The equilibrium price P1995 is determined by this equation and, thus, so is the whole path of

the equilibrium price.

F.2 Model without Permit Banking between Phase I and II

I explain the case in which firms are not allowed to bank emissions permits between Phases

I and II. The decision problem is the same as that introduced in Section 3, except for 1999,

the last year of Phase I.

I first consider the problem for a trader in 1999 (i.e.,t = 1999). I omit the subscript i for

simplicity. The problem is given by
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V 1
1999(h1999, I1999 = 1, α1) = max

{Rjt}
Jit
j=1,bt

πt

(
{qjt, Rjt}Jitj=1

)
− (Ptbt + TC(|bt|)) + βW2000(0, I2000, α

1)

s.t. et

(
{qjt, Rjt}Jitj=1, α

1
)

= at + ht + bt.

Note that permit banking h2000 is not among the choice variables, while the continuation

value W2000(0, I2000, α
1) is evaluated at h2000 = 0. The optimality conditions of the problem

are given by Equations (3.6) and (3.7).

Next, consider the case in which a firm is a non-trader:

V 0
1999(h1999, It = 0, α1) = max

{Rjt}
Jit
j=1,bt

πt

(
{qjt, Rjt}Jitj=1

)
+ βW2000(0, I2000, α

1)

s.t. et

(
{qjt, Rjt}Jitj=1, α

1
)
≤ at.

In this case, a firm may not consume all its permits owing to the capacity constraints of

production. The emissions level is given by

e∗t = min {at, emaxt } ,

where emaxt is the emissions level when a firm faces zero shadow costs of permits λt = 0.

Other components, including the participation and the investment decisions, are the same

as in the baseline case (i.e., the case that includes both permit banking and transaction costs).
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