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Abstract

This paper proposes an empirical model of a discrete choice demand with a nonparametric

income effect specification. The model allows for the flexible estimation of demand curvature,

which has significant implications for pricing and policy analysis in oligopolistic markets. We

adopt a sieve approximation method with shape restrictions from econometrics literature in a

nested fixed-point algorithm. Applying this framework to the Japanese automobile market, we

conduct a pass-through analysis of feebates and merger simulations. Our model predicts a higher

pass-through rate and more significant merger effects than a simple logit model, highlighting

the importance of flexibly estimating demand curvature.
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1 Introduction

Estimating a consumer demand model is crucial for empirical research in industrial organization

and related fields. Price elasticity and substitution patterns implied from the demand model are key

when firms make pricing decisions in oligopolistic markets. Consumer demand is also essential for

evaluating the welfare consequences of a firm’s strategic behavior and policy changes. Therefore,

accurate measurement of consumer demand is critical for various applications, including merger

analysis (Nevo, 2000a), pass-through analysis of cost shocks and taxes (Weyl and Fabinger, 2013),

and introducing new products (Petrin, 2002).

Given the practical importance of the demand model, a vast body of literature in empirical

industrial organization proposes an econometric method for estimating consumer demand for dif-

ferentiated products (Berry and Haile, 2021; Gandhi and Nevo, 2021). Most existing frameworks

rely on parametric specifications because a fully flexible model of differentiated product demand

has significantly many parameters.1 However, this approach might be problematic because a para-

metric specification often leads to strong restrictions on the shape of the demand curve, which

affects the implications of supply and demand analysis.

To address this concern, we propose a semiparametric framework for a discrete choice demand

that accommodates an income effect in a flexible way. We demonstrate that a flexible specification

for the income effect is vital for estimating the curvature of the demand function. Applying the

proposed framework to data from the Japanese automobile industry, we conduct merger simulations

and a pass-through analysis for a feebate policy (i.e., a subsidy for eco-friendly cars). These simu-

lations demonstrate the practical value of our demand framework in policy-relevant applications.

In the spirit of previous works such as McFadden (1974), Berry (1994), and Berry et al. (1995)

(henceforth BLP), we employ a random utility framework to model differentiated product demand.

Our approach differs from prior research by incorporating income effects in a nonparametric man-

ner, while maintaining parametric specifications of other primitives such as additive random utility

shocks and utility from product characteristics. Previous studies often employ a quasi-linear specifi-

cation of random utility without considering income effects or incorporate a parametric assumption

1Consider a log-log specification of the demand system with J products. The number of parameters required to
estimate the own- and cross-price elasticity matrices is on the order of J2. Consequently, to alleviate the burden of
estimation, researchers must impose constraints on the demand system. Further details can be found in Berry (1994).
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on the income effect. We demonstrate that allowing for greater flexibility in the functional form of

the income effect term is critical to estimating demand curvature and the pattern of price elasticity.

The framework also permits the estimation of welfare changes in the presence of the income effect

(McFadden 1999; Dagsvik and Karlström 2005).

Our demand model is a semiparametric framework that includes both a parametric component

of utility from product characteristics and a non-parametric function of the income effect. To esti-

mate this model, we use a combination of a sieve approximation from semiparametric econometrics

literature (Chen, 2007) and the nested fixed point algorithm proposed by BLP. First, we approx-

imate a nonparametric function of the income effect using a sieve, a linear combination of known

basis functions. We use Bernstein polynomials as a basis function because of the shape-preserving

property we explain below. After adopting the sieve approximation, our model becomes similar

to the standard parametric BLP framework. We then use a nested fixed-point approach in GMM

estimation.

A novelty of our estimation method is to exploit a shape restriction on the nonparametric

function of the income effect. In general, non- and semi-parametric estimation methods often

suffer from the imprecision of the estimator. This issue is particularly crucial when the model

has an endogeneity problem, which must be encountered in demand estimation.2 To alleviate this

issue, recent econometrics literature proposes using shape restrictions in non- and semi-parametric

estimation.3 As we show in Section 2.1, the specification of the income effect is weakly increasing,

is implied from utility maximization of consumers. We incorporate this monotonicity restriction in

our semiparametric estimation. Monte Carlo experiments in Section 4 shows that estimation with

a shape restriction significantly reduces the variance of the estimated nonparametric function in

our demand model.4

We apply our semiparametric framework to annual-level data from the automobile market in

Japan. The dataset includes product- and market-level information on sales, prices, and charac-

teristics from 2006 to 2013. Our estimation results show that the shape of the income effect and

2In a semiparametric setting, endogeneity leads to an ill-posed inverse problem and imprecise estimation of non-
parametric components. See, e.g., Horowitz 2014 for the details.

3Chetverikov and Wilhelm (2017) demonstrate an improvement in estimation performance by shape restriction in
the context of a nonparametric instrumental variable model.

4Previous literature (e.g., Blundell et al. 2017; Chetverikov and Wilhelm 2017) has demonstrated that shape
restriction can improve the estimation performance in non- or semiparametric models that are linearly separable in
the error term. Our simulation analysis indicates that the same insight can be applied to nonseparable models.
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the resulting price elasticity exhibit significant nonlinearity. We then use the estimated model to

conduct two counterfactual simulation exercises, a pass-through analysis and a merger simulation,

in which the demand curvature plays a crucial role. We compare simulation results produced by

our demand model with those from a simple logit model.

In our first counterfactual, we evaluate the pass-through of the Japanese government’s subsidy

for eco-friendly cars, which was introduced in 2009. Evaluation of this policy amounts to a pass-

through analysis of a subsidy. In theory, Weyl and Fabinger (2013) show that the demand curvature

determines the degree of pass-through to the final price. Our model predicts a higher pass-through

rate than the standard logit model, which imposes a priori restriction on the pass-through rate.

Second, we perform a merger simulation using our demand model. This counterfactual simu-

lation is motivated by the practical observation that a standard logit demand model often under-

predicts the price effects of a merger due to its curvature property (see Crooke et al. 1999). Our

simulation results support this observation. Given the level of own-price elasticity, the standard

logit demand model predicts smaller price effects than our semiparametric demand model. Addi-

tionally, the simple logit model anticipates smaller price effects for more expensive products, which

is due to a mechanically-induced pattern in the own-price elasticity. The prediction based on our

flexible demand model does not exhibit such a pattern.

The remainder of this paper is structured as follows. First, we review the related literature

to clarify the paper’s intended contributions. In Section 2, we introduce a demand model for

differentiated products with a nonparametric income effect. We then discuss the estimation of the

model using aggregate (market-level) data in Section 3. In Section 4, Monte Carlo experiments are

conducted to assess the performance of the proposed framework. The framework is then applied to

Japanese automobile data, and the demand model is estimated in Section 5. Using the estimated

model, we conduct two counterfactual simulations on the pass-through analysis and the merger

analysis in Section 6. Finally, Section 7 concludes the paper.

Related Literature This paper makes contributions to three strands of literature. First, our

paper relates to the literature on non- and semiparametric estimation of consumer demand models.

Many prior works (e.g., Blundell et al. 2012, 2017) have focused on the case of homogenous goods

demand. More recent studies have examined the demand for differentiated products in the discrete

4



choice framework (e.g., Bhattacharya 2015; Tebaldi et al. 2019). These studies explore nonpara-

metric identification and estimate demand and welfare when individual-level data is available. Our

work, on the other hand, considers the case where only aggregate data (such as market-level data)

is available, similar to the approach taken by BLP and subsequent studies.

Griffith et al. (2018) is the closest paper to ours. Their demand model incorporates a flexible

and parametric form of the income effect into a discrete-choice demand model. The authors use

the framework to estimate the demand for margarine in the UK and evaluate the tax on saturated

fat content. Our paper complements Griffith et al. (2018) in both methodology and application.

Regarding the methodology, we nonparametrically estimate income effect terms with shape restric-

tions using a sieve approximation, showing that a shape restriction can aid in precisely estimating

the nonparametric term of the income effect. We also focus on the case where only aggregate data

(i.e., market-level data) is available, as opposed to the individual-level choice data used by Griffith

et al. (2018).5 Moreover, we consider price endogeneity using instrumental variables. Note that

our application is for automobile demand, where the income effect might play a crucial role in a

purchase decision. We also analyze the implication of the flexible income effect in pass-through

analysis and merger simulation.

Other related papers include Compiani (2021), Wang (2022), and Birchall and Verboven (2022).

Compiani (2021) proposes a fully nonparametric estimation approach for differentiated product

demand models. Although Compiani (2021) accommodates a wide array of demand models, it

is difficult to directly apply the approach to a case with many products.6 Our framework can

manage such a case by relaxing a commonly imposed assumption on the functional form of the

indirect utility function. Wang (2022) proposes a semiparametric model of differentiated products

in a BLP framework that nonparametrically estimates the distribution of random coefficients. By

contrast, our paper relaxes the assumption on the functional form of the income effect and estimates

it nonparametrically. Finally, Birchall and Verboven (2022), whose work builds on Björnerstedt

and Verboven (2016), apply a Box–Cox specification in the discrete choice model to relax the unit

5Herriges and Kling (1999) and Morey et al. (2003) also incorporate the nonlinear income effect in a parametric
fashion to estimate discrete choice models using individual-level data.

6Berry and Haile (2014) and Compiani (2021) consider the identification and estimation of the inverse of mean
utility as a function of the vectors of prices and market share, amounting to a 2J dimensional function where J is
the number of products. In contrast, our approach estimates a one-dimensional nonparametric object of the income
effect.
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demand assumption and flexibly estimate the demand curvature. The authors apply the framework

to estimate the demand for ready-to-eat cereals. Our approach is complementary to Birchall and

Verboven (2022) in the sense that we provide a flexible specification for the case of unit demand,

which can be applied to durable goods such as appliances and automobiles.

Second, our paper is related to the literature of empirical studies on pass-through (e.g., Naka-

mura and Zerom 2010; Goldberg and Hellerstein 2013; Fabra and Reguant 2014; Hollenbeck and

Uetake 2021). We contribute to this literature by demonstrating the importance of flexibly es-

timating the demand curvature when evaluating the pass-through of tax and subsidies through

supply-side simulation. Our empirical findings align with a theoretical study by Weyl and Fabinger

(2013) showing the importance of the demand curvature as the determinant of the pass-through

rate. While the simple logit model suffers from the restriction that the pass-through rate is capped

by the unity, our demand model allows the pass-through rate to be larger than one.

Third, our paper contributes to the vast literature on the empirical analysis of horizontal merg-

ers. Since the work of Nevo (2000a), there have been many empirical studies that conduct a

simulation analysis in a differentiated product market to analyze the effects of horizontal mergers

on price and social welfare.7 Estimation of the demand model is crucial to accurately predict the

price effects of a merger because oligopolistic firms consider the underlying demand structure in

their pricing decisions. While the logit model or its variant random coefficient logit model are

often used in such analyses, these models may suffer from a restrictive curvature property that

impacts the simulated merger effects (see, e.g., Crooke et al. 1999). In response to this issue, we

demonstrate that our demand model can flexibly estimate the demand curvature, thus offering an

alternative demand model that can be used in antitrust analyses.

2 Demand Model

2.1 Utility Maximization Problem

This section introduces a model of differentiated product demand with a nonparametric income

effect. We begin with a utility maximization problem incorporating both continuous and discrete

7See, e.g., Peters (2006) on airline mergers, Fan (2013) on newspaper mergers, Houde (2012) on gas stations,
Gowrisankaran et al. (2015) on hospital mergers, Miller and Weinberg (2017) on beer mergers, Ohashi and Toyama
(2017) on automobile mergers, and Björnerstedt and Verboven (2016) on pharmaceutical mergers.
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choices (McFadden 1981). A consumer makes a discrete choice regarding differentiated goods and

a continuous choice regarding all other bundles of goods. As assumed later, we can consider a

continuous choice problem as the consumption of the numeraire.

Let U(m, j) be a direct utility function. m is a dm-dimensional vector of consumption of

continuous choice goods. The index j ∈ J ≡ {0, 1, · · · , J} represents an alternative in the discrete

choice decision. There are J products available in the market. The index j = 0 means that a

consumer does not buy any of the discrete goods. We call this option “outside goods.”

The utility maximization problem is given by the following:

max
(m,j)∈Rdm+ ×J

U(m, j) (2.1)

s.t. Pm
′m + pj ≤ yi,

where Pm is a dm dimensional vector of prices of continuous choice goods, pj is the price of

alternative j, and yi is income.

Conditional on choice j in the discrete choice, we define the conditional indirect utility function

as follows

V (Pm, y − pj , j) ≡ max
m∈Rdm+

U(m, j) s.t. Pm
′m ≤ yi − pj . (2.2)

Note that we define p0 = 0 because choosing the outside good does not incur any costs.

The problem on the right-hand side of Equation (2.2) is a standard utility maximization prob-

lem. Hence, the conditional indirect utility function V (Pm, y − pj , j) has the following standard

properties: (1) homogeneous of degree 0 with respect to Pm and (y−pj), (2) increasing in (y−pj),

(3) non-decreasing in Pm, and (4) quasi-convex in (yi − pj) and Pm.

The following assumption is placed on the direct utility function:

U(m, j) = v(j) + u(m). (2.3)

This assumption imposes that the utility from differentiated goods is independent of the one from

all other goods. While it may seem restrictive, we show that most discrete-choice demand models

implicitly impose this assumption.8 Under this assumption, the conditional indirect utility function

8This restriction excludes the discrete-continuous choice model of Dubin and McFadden (1984), in which the choice
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can be written as

V (Pm, y − pj , j) = v(j) + Ṽ (Pm, y − pj). (2.4)

The function Ṽ (Pm, y− pj) satisfies the above four properties implied by the utility maximiza-

tion problem. In practice, however, we do not necessarily observe the prices of all other goods Pm.

We further assume that the continuous good is a numeraire and denote its price using Pm, which

is considered to be the price index. We now have Ṽ (Pm, y − pj) = u
Ä
y−pj
Pm

ä
. With a slight abuse

of notation, we denote f(y − pj) ≡ Ṽ (Pm, y − pj).

The function f(y − pj) is referred to as the income-effect term. Hereafter, we consider both

income y and the price of discrete choice goods pj as deflated by the price index Pn. This consid-

eration imposes a restriction whereby f(y − pj) is a weekly increasing function.

2.2 Conditional Indirect Utility Function

Turning to the utility generated by consuming a discrete choice good v(j) in Equation (2.3), we

follow the standard specification in the literature. We add index i, representing a consumer, and

denote the utility from a discrete choice good j as vij .

vij = β′Xj + ξj + εij for j = 1, . . . , J (2.5)

vi0 = εi0 (2.6)

Xj is a vector of observable characteristics of product j, and ξj represents unobservable character-

istics. εij is an independent and identically distributed (i.i.d.) idiosyncratic shock that follows the

type I extreme-value distribution.

We now write the conditional indirect utility function of consumer i when she chooses j:

Vij =


f(yi − pj) + β′Xj + ξj + εij for j = 1, · · · , J

f(yi) + εi0. for j = 0

. (2.7)

The resulting specification for the indirect utility function is standard except for the income-

of the appliance (i.e., discrete decision) affects the utility generated by electricity consumption (i.e., continuous deci-
sion). Newey (2007) considers a nonparametric identification of a discrete-continuous choice model when individual
choice data is available. Extending our framework to such a case would be a fruitful direction in future research.
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effect term f(y − p). We do not impose any functional form but note that this function is weakly

increasing, as implied by utility maximization in Equation (2.2).

Our specifications are now compared with the ones in previous studies. The quasi-linear form is a

major specification in the literature, such as Vij = α(yi−pj) +β′Xj + ξj + εij . In this specification,

the resulting demand function does not depend on income level yi because the income term is

canceled out when comparing two alternatives.9 BLP specifies Vij = α ln(yi− pj) + β′Xj + ξj + εij ,

which allows for a parametric form of the income effect.10 In our approach, we do not place any

parametric assumption on f(·), except that it is an increasing function. We discuss the advantage

of such a flexible specification in Section 2.4 in various contexts in the industrial organization

literature and applied microeconomics.

2.3 Individual Choice Probability and Market Share

In this subsection, we consider the discrete choice decision based on the conditional indirect utility

function obtained above. We then derive the market share equation, which provides the basis for

later estimation. Hereafter, we add the index t denoting the market, which is defined by geography,

time, or both. The conditional indirect utility function is now denoted by Vijt.

When considering the discrete choice decision, we must consider the budget constraint in the

original utility maximization problem (2.1). The budget constraint implies that consumer i with

income yit cannot buy goods whose price pjt is higher than their income. Previous literature mostly

ignores this budget constraint because it has no impact under the common utility specification, such

as a quasi-linear form. Recent papers (e.g., Xiao et al. 2017; Pesendorfer et al. 2023) discuss the

bias associated with the omitted variable constraint. The budget constraint implies that each

consumer i has a different choice set according to her income. Specifically, we define the choice set

of consumers i as

Jit = {0} ∪ {j ∈ {1, · · · , Jt} : yit − pjt ≥ 0} , (2.8)

where Jt is the total number of products available in market t.

Given the conditional indirect utility Vijt, a consumer i chooses the alternative that provides

9Another common specification in the literature is Vij = αi(yi − pj) + β′Xj + ξj + εij , αi = g(zi) where zi is
consumer i’s characteristics such as income, age, household size, and other variables. See Nevo (2001).

10In practice, the term α log(yi−pj) can be approximated by α
yi
pj as a first-order Taylor expansion (see, e.g., Berry

et al. 1999).
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the highest utility from the choice set Jit. The discrete choice problem is given as follows:

max
j∈Jit

Vijt. (2.9)

The choice probability for consumer i selecting alternative j is derived as

sijt(yit) =
1{yit ≥ pjt} · exp (f(yit − pjt) + β′Xjt + ξjt)

exp(f(yit)) +
∑Jt

k=1 1{yit ≥ pkt} · exp (f(yit − pkt) + β′Xkt + ξjt)
. (2.10)

Note that the indicator function 1{yit ≥ pjt} accounts for the budget constraint.

The market share of each product sjt is now derived by aggregating the individual choice

probability across consumers. In the current specification, consumer heterogeneity comes from

individual income yit.
11 Let yit follow the distribution of income Gt(yit). The market share is given

by

sjt =

∫
sijt(yit)dGt(yit).

Market demand qjt is calculated by multiplying the market share sjt by the market size Nt, that

is, qjt = Nt × sjt.

2.4 Model Implications

This subsection evaluates the importance of the flexible income effect by illustrating its consequences

for price elasticity. We also explore how the estimated shape of the demand function relates to the

pass-through analysis and merger simulations.

Price Elasticity To highlight the novelty of our demand specification, we first review the price

elasticity of the logit model under quasi-linear utility without consumer heterogeneity (i.e., f(y −

p) = α(y− p)). Omitting index t for notational simplicity, the own- and cross-price elasticity ηjk is

given as follows

ηjk =
∂qj
∂pk

pk
qj

=


−αpj(1− sj) if k = j

αpksk if k 6= j

(2.11)

11The model can also incorporate random coefficients on product characteristics, e.g., uijt = f(yit− pjt) +β′iXjt +
ξjt + εijt, where βi ∼ N(β̄,Σ). This specification allows for a richer substitution pattern across products.
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Price elasticity under the quasi-linear specification is known to be reasonably restrictive (e.g.,

see Nevo (2000b)). More specifically, the absolute value of own-price elasticity |ηjj | increases in its

own price pj , which implies that more luxurious goods have higher own-price elasticity.

In our demand specification, the price elasticity is given as follows:

ηjk =
∂qj
∂pk

pk
qj

=


−pj
sj

∫
f ′(yi − pj)sij(1− sij)dG(yi) if k = j

−pk
sj

∫
f ′(yi − pk)sijsikdG(yi) if k 6= j

(2.12)

Price elasticity now depends on the income effect term f(y − p). More specifically, the second-

order derivative of the demand curve depends on the shape of f(y − p), which we can flexibly

estimate by employing a nonparametric approach. Thus, our method does not impose an a priori

restriction on how own-price elasticity changes in relation to price.

It is worth discussing how our approach relates to the random coefficient logit model commonly

used in practice. Nevo (2000b) notes that introducing heterogeneity in price sensitivity among

consumers (i.e., the marginal utility from income) can flexibly estimate price elasticity even when

prices enter linearly into the utility function. If consumers who purchase cheaper products have

high price sensitivity, the own-price elasticity of that product may be high. Therefore, adding a

random coefficient can help to address issues related to both cross- and own-price elasticity. In our

demand model, price sensitivity f ′(yi − pj) is heterogeneous among consumers because it depends

on income. In addition, price sensitivity f ′(yi − pj) depends on the price level in our model, which

adds further flexibility in estimating own-price elasticity.12

Pass-Through Analysis The pass-through analysis measures how prices change according to

an alteration in the production cost or tax (subsidy). Some theoretical studies have discussed

the importance of demand curvature as a determinant of pass-through. Most notably, Weyl and

Fabinger (2013) have shown that, in a symmetric oligopoly or monopoly, the pass-through rate is

less than 1 if and only if the demand curve is log-concave (i.e., d log q(p)
dp2

< 0).

With a quasi-linear specification in a simple logit model, demand is always log-concave. Even

12While our focus is on own-price elasticity, note that the income effect term also affects cross-price elasticity. The
income effect term f(y−p) introduces consumer heterogeneity in price sensitivity. Price-sensitive customers prefer to
buy cheaper products than price-elastic consumers who are less concerned about price. This heterogeneity generates
substitution patterns according to the product price.
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if we do not adopt a simple quasi-linear specification, a function form on the income effect imposes

an a priori restriction on the demand curvature, and thus the pass-through rate. This property

highlights the importance of our flexible demand framework in analyzing the pass-through of cost

shocks and tax policy.13

Merger Analysis Merger analysis is of immediate relevance to antitrust practice. The primary

goal of merger analysis is to forecast the price increase resulting from the merger of two competing

firms. One approach is to construct the measure of upward pricing pressure based on the diversion

ratio of competing products and markup (Farrell and Shapiro 2010; Jaffe and Weyl 2013). This

measure indicates the potential price impact of the merger. A more comprehensive approach is a

merger simulation, in which one builds and estimates a demand and supply model of the market

and performs a counterfactual simulation by solving the market equilibrium in which two firms

jointly maximize profits.

The shape of the demand function is crucial in estimating the merger effect in both approaches.

In the approach proposed by Farrell and Shapiro (2010) and Jaffe and Weyl (2013), the effect of

a merger can be thought of as a cost pass-through in the first order because the merged firm now

takes into account the opportunity cost of losing the profits of the partner.14 The price effect of a

merger is determined by the extent to which the increase in opportunity cost is reflected in the final

price. Therefore, the significance of demand curvature in pass-through analysis can also be applied

to this context. In a merger simulation approach, Crooke et al. (1999) has demonstrated that

demand with the same elasticities but different curvature might lead to simulated merger effects

that differ by orders of magnitude.

In our empirical application in Section 5 and 6, we illustrate the significance of the flexible

income effect. Specifically, we perform numerical analysis to simulate the pass-through of a subsidy

on eco-friendly cars and the price effects of a hypothetical merger. By comparing the results based

on our demand model with those based on a simple logit model, we demonstrate the usefulness of

13Griffith et al. (2018) provides detailed discussions on how the flexible income effect specification is crucial in
pass-through analysis.

14Consider a merger between two single-product firms. The new first-order condition for firm 1’s price is p1 +Ä
∂q1
∂p1

ä−1
q1 = c1 +

Ä
− ∂q2
∂q1

ä−1
(p2 − c2). The left-hand side is the marginal revenue from firm 1’s product. The second

term on the right-hand side is the profit loss from firm 1’s product due to the diversion from firm 2 to firm 1. This
term is considered to be the opportunity cost for firm 1 to increase its production.
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our demand framework in policy-relevant applications.

3 Estimation Approach

This section introduces an estimation method for our semiparametric model. The model contains

the nonparametric function f(y−p) and the linear parameter β in the utility function. To estimate

these model primitives, we use a sieve approximation of the nonparametric function and incorporate

it into the nested fixed-point algorithm proposed by BLP. We also impose a shape restriction on

the nonparametric component to improve the precision of the parameter estimate.

3.1 Sieve Approximation with Shape Restriction

We first explain the method of sieve approximation proposed by Chen (2007) and Blundell et al.

(2007). In the sieve method, we approximate a nonparametric function by a linear combination

of known basis functions. While there are many candidates of basis functions, we use the Bern-

stein polynomial as it allows us to incorporate the shape restriction easily. More specifically, we

approximate function f(·) by the K-th order Bernstein polynomial BK(x):

f(x) ≈ BK(x) =
K∑
k=0

πkb
K
k (x) ≡ ψK(x)′Π (3.1)

where

bKk (x) =

Ö
K

k

è
xk(1− x)K−k, (3.2)

ψK(x) =
(
bK0 (x), bK1 (x), . . . , bKK(x)

)′
, and Π = (π0, π1, . . . , πK)′. The nonparametric function f(·)

is now approximated by a linear function of the basis function ψK(x) and coefficients Π.

An advantage of using the Bernstein polynomial as a basis function is that we can easily in-

corporate the shape restriction on the nonparameric function. As we saw in Section 2.1, the

nonparametric income-effect term f(y− p) is weakly increasing. We incorporate this shape restric-

tion in our estimation by imposing constraints on coefficient Π. Under the approximation by the
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Bernstein polynomial, the derivative can be written as

B′K(x) = K
K−1∑
k=0

(πk+1 − πk) bK−1k (x)

Thus, the monotonicity restriction (i.e., B′K(x) ≥ 0) can be imposed by πk ≤ πk+1 for all k.

Lastly, we need to normalize the function by setting π0 = 0, so that we have f(0) = 0. This

normalization is needed because we cannot identify the level of the income effect term f(·). More

clearly, if f(·) in Equation (2.10) is replaced with f̃(·) = f(·) + C, the constant term C will be

canceled out.

3.2 Sieve GMM Estimation with Nested Fixed-Point Algorithm

We incorporate the sieve approximation into the nested fixed point algorithm of BLP to estimate

the model parameters. With sieve approximation, the model can be written as

sjt =

∫
1{yit ≥ pjt} · exp

(
ψK(yit − pjt)′Π + β′Xjt + ξjt

)
exp(ψK(yit)′Π) +

∑Jt
k=1 1{yit ≥ pjt} · exp (ψK(yit − pjt)′Π + β′Xkt + ξjt)

dGt(yit). (3.3)

In the model, unobserved product characteristics ξjt represent an econometric error term. The

parameters we estimate are summarized by (β,Π).

As is common in the estimation of consumer demand models, our model is subject to an en-

dogeneity problem. The source of endogeneity is the correlation between the product price pjt

and the unobserved product characteristics ξjt, which is an econometric error term. Although

econometricians lack data on unobserved product characteristics ξjt, oligopolistic firms might have

some information. Firms may select their product prices while considering product characteristics

that are unobservable for econometricians. This asymmetry then leads to the endogeneity problem

associated with product prices.

We address this endogeneity problem by using instrumental variables. We impose the following

conditional mean restrictions:

E [ξjt|Zjt] = 0 for all j = 1, 2, ...Jt, and t = 1, 2, ...T, (3.4)

where Zjt is a vector of exogenous variables in the utility function (Xjt) and additional instruments
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(Wjt). We specify additional instruments Wjt in our empirical application later.

In the estimation, we adopt a sieve generalized method of moments (GMM) estimator (Chen

(2007)), which utilizes the following unconditional moment restrictions:15

E [ξjt(θ)pb(Xjt,Wjt)] = 0, b = 1, . . . , B, (3.5)

where θ ≡ (β,Π) denotes a set of model parameters and {pb(Xjt,Wjt)}b=1,...,B is a sequence of

known functions that can approximate any real-valued square-integrable functions of Xjt and Wjt

as B →∞.

The sieve GMM criterion function is given as follows: 16

ξ(β,Π)′P̃(P̃′P̃)−P̃′ξ(β,Π), (3.6)

where ξ is a vector that stacks unobserved demand shock ξjt for j = 1, · · · , Jt and t = 1, · · · , T .

The matrix P̃ = [P,P⊗X] denotes a matrix of instruments. We follow Chetverikov et al. (2018)

for our choice of matrix P̃. We first consider a linear span of additional instruments Wjt by a

known basis function and denote it as p(Wjt) = (p1(Wjt), · · · , pB(Wjt))
′. Then the matrix P is

defined as P = (p(W11), · · · , p(WJT ,T ))′. We also include the tensor product of the columns of two

matrices P and X = (X11, · · · , XJT ,T )′, denoted by P⊗X.

In implementing the estimation method introduced above, we must obtain the econometric error

term ξjt given the parameter (β,Π). Since this term enters the demand function (3.3) nonlinearly,

we need to the nested fixed-point algorithm to calculate ξjt. We define the mean utility as δjt =

β′Xjt + ξjt, which is the common component of the utility of product j in market t. BLP have

shown that there exists a unique vector of δt = {δ1,t, · · · , δJt,t} such that the observed market share

15The sieve GMM estimation is considered to be a sieve minimum distance estimation in which the conditional
expectation is estimated using a series estimator with an identity weighting matrix (see, e.g., Chen (2007)).

16Some of the sieve estimation methods for non- and semiparametric models with endogeneity propose a penalization
term on the higher derivative of the nonparametric function to alleviate the ill-posed inverse problem (see, e.g., Chen
(2007)). In practice, this penalization term is not necessarily used in implementation, as discussed in Chetverikov and
Wilhelm (2017). Our approach aligns with this practice for several reasons. First, penalization requires choosing a
tuning parameter that governs the strength of penalization. Second and more importantly, our approach incorporates
a monotonicity restriction on a nonparametric function, which has a similar effect to penalization. Chetverikov and
Wilhelm (2017) demonstrated in their empirical application that the penalization term does not affect the result once
they impose a shape restriction in the estimation. See Appendix B.3 in Chetverikov and Wilhelm (2017) for further
discussion.
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{sjt}j=1,··· ,Jt is equal to the predicted market share in the model. The vector of mean utility δt can

be obtained by a contraction mapping.

We calculate the value of the objective function given a candidate parameter value of Π, as

follows: (1) calculate the vector of mean utility δ by applying a contraction-mapping algorithm;17

(2) run a linear regression of δ on X to obtain β̂ and the residual ξjt; and (3) calculate the value

of the objective function: (3.6).

We then run a numerical optimization to minimize the objective function. Note that the pa-

rameter β appearing in the mean utility function can be obtained by employing a linear GMM.18

Thus, we only need to run a nonlinear optimization routine over Π. This property circumvents the

computational costs and allows us to incorporate a rich set of covariates and fixed effects in the

mean utility component δjt.

To calculate the confidence interval of the linear parameter β and the nonparametric function

f(y− p), we use a generalized residual bootstrap proposed by Chen and Pouzo (2015) (specifically

Theorem 5.2 of their paper).

4 Monte Carlo Simulation

Before applying our estimation approach to real-world data, we conduct Monte Carlo experiments

to evaluate the efficacy of our approach. Specifically, we investigate the extent to which our esti-

mation method can accurately recover the income effect term, denoted by f(y − p), and the linear

coefficients, represented by β, in the utility function. Additionally, we deliberate on the significance

of shape restrictions in achieving the precise estimation of the non-parametric component.

4.1 Data Generating Process

We consider a market t where the total number of products is Jt. In our simulations, we set Jt = 100

for all market t and T = 10. We consider the following utility specification:

Vijt =


β0 + β1xjt + ξjt + f(yit − pjt) + εijt for j = 1, · · · , J

f(yit) + εi0t. for j = 0

, (4.1)

17We set the tolerance level of the algorithm at 1E-12 .
18This estimation trick is called ”concentration out.” See, e.g., Nevo (2001).
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where εijt follows an i.i.d. type I extreme-value distribution. The observed product characteristic

xjt follows the uniform distribution U(0, 1). The unobserved product characteristic ξjt is assumed

to follow the normal distribution with mean 0 and standard deviation 0.1 (i.e., ξjt ∼ N(0, 0.12).)

The product price pjt is given by the following:19

pjt = 0.2 + 0.3xjt + wjt + ξjt, (4.2)

where we include the term ξjt in the product price to consider the endogeneity between the price

and the unobservable product characteristics. We add the “cost shifter” wjt following the uniform

distribution U(0, 1), which will serve as an instrument for the product price.

The market share of each product sjt is given by Equation (2.3). To compute sjt in the

simulation, we use a numerical integration with a quasi-randomly drawn 1000 units from the Halton

sequence. The income is drawn from the log-normal distribution. Specifically, we assume that

yjt ∼ LN(0, 0.252). Given the data-generating process, the variable y − p has the support of

approximately from -1.5 to 2.5.

The model primitives we estimate are β0, β1, and f(y − p). We set β0 = −5 and β1 = 3, and

consider the three different specifications for the income effect term f(·) as follows;

DGP 1 f(a) = sinh−1 (a)

DGP 2 f(a) = ln(2) + ln(|a− 1|+ 1)sgn(a− 1)

DGP 3 f(a) = a

Note that the second function is less smooth than the other two functions because it is not

differentiable at a = 1. Moreover, the function is convex if a ∈ [0, 1] and concave if a ≥ 1.

Therefore, after we standardize positive y − p to the range of [0, 1], the curvature of the second

income function changes at approximately the 40th percentile point. See the footnote 21 for more

detail on the standardization procedure.

19The data-generating process of the price assumes that the price is competitively determined by the marginal
costs. We do not incorporate Bertrand competition into the supply side in our Monte Carlo experiments.
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4.2 Implementation

To estimate the income function f(·) nonparametrically, we use the sieve approximation method

introduced in Section 3.1 with Kth order Bernstein polynomials. We set K = 3, 4, and 5 and

compare the results across the different choices of order.

The cost shifter wjt is used to construct an instrument for the price. More specifically, we set

p(wjt) = (1, wjt, · · · , w3
jt)
′ as the basis function. Thus, each row of the matrix P ⊗ X comprises

all products of the forms: p(wjt)
′xjt = (xjt, wjtxjt, w

2
jtxjt, w

3
jtxjt) for all j = 1, 2, ...Jt, and t =

1, 2, ...T. We then apply sieve GMM estimation along with the nested fixed-point algorithm.20

To measure the precision of estimation for the nonparametric income function, we compute the

mean integrated squared error (MISE) by MISE = 1
NS

∑NS
r=1

(∫ 1
0

Ä
f(z)− f̂ r(z)

ä2
dz
)
, where z is

the standardized value of y − p ranging from 0 to 1.21. The subscript r denotes the index for a

simulation. The total number of simulations NS is set to 100. Regarding the linear parameters

(β0, β1), we calculate the mean bias and root mean square error (RMSE) given by Bias(βj) =

1
NS

∑NS
r=1 β̂

r
j − βj and RMSE(βj) = 1

NS

∑NS
r=1(β̂

r
j − βj)2.

4.3 Results

The simulation results are reported in Table 1 and Figure 1 for DGP 1, Table 2 and Figure 2

for DGP 2, and Table 3 and Figure 3 for DGP 3. The first point to note is that the overall

simulation results with shape restriction substantially outperform those without shape restriction.

Specifically, the MISE of nonparametric function f(y−p) is much smaller when shape restriction is

applied to the income effect. This finding is consistent with Chetverikov and Wilhelm (2017), who

demonstrate a large performance gain from the monotonicity restriction under a semiparametric

partially linear model with endogeneity. Our simulation results demonstrate that their finding can

also be applied to a setting where the model is non-separable.

Figures 1, 2, and 3 show the estimated function and its 95% confidence interval (CI). Without

the shape restriction, the function is estimated poorly near the endpoint of the support. On the

other hand, the confidence band remains narrower when we impose the restriction. Regarding

20We set the tolerance level of the nested fixed-point algorithm as 1E-12 and employ the constrained minimization
procedure in the Knitro solver.

21We standardize the generated yi − pj as follows. Let zmax = max{yi − pj} and zmin = min{yi − pj |yi − pj > 0}.
Next, we define z ≡ yi−pj

zmax−zmin
so that z ranges in [0, 1] if yi − pj is positive.
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the linear parameter β, the RMSE of the estimated β0 under the restriction is much smaller than

that without the restriction. However, the estimation precision of β1 is similar regardless of the

restriction.
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Table 1: Results of Monte Carlo Simulation (DGP 1)

(i) MISE of f(y − p)
Without SR With SR

K = 3 0.0141 0.0022
K = 4 0.0202 0.0052
K = 5 0.5886 0.0064

(ii) β0

Without SR With SR

Bias RMSE Bias RMSE

K = 3 0.0212 0.0760 -0.0028 0.0222
K = 4 0.0253 0.0991 0.0034 0.0403
K = 5 0.0014 0.3093 0.0027 0.0452

(iii) β1

Without SR With SR

Bias RMSE Bias RMSE

K = 3 -0.0002 0.0119 -0.0008 0.0118
K = 4 -0.0003 0.0119 -0.0005 0.0119
K = 5 0.0026 0.0135 -0.0004 0.0119

Figure 1: Median and 95% CI for DGP 1

K = 3

Estimate: Median

True

No restriction

With restriction

K = 4

Estimate: Median

True

No restriction

With restriction
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Table 2: Results of Monte Carlo Simulations (DGP 2)

(i) MISE of f(y − p)
Without SR With SR

K = 3 0.0124 0.0033
K = 4 0.0169 0.0044
K = 5 0.5191 0.0054

(ii) β0

Without SR With SR

Bias RMSE Bias RMSE

K = 3 0.0027 0.0754 -0.0166 0.0291
K = 4 0.0167 0.0938 -0.0170 0.0361
K = 5 -0.0060 0.3106 -0.0153 0.0436

(iii) β1

Without SR With SR

Bias RMSE Bias RMSE

K = 3 0.0002 0.0120 -0.0003 0.0119
K = 4 -0.0004 0.0119 -0.0003 0.0119
K = 5 0.0027 0.0136 -0.0004 0.0119

Figure 2: Median and 95% CI for DGP 2

K = 3

Estimate: Median

True

No restriction

With restriction

K = 4

Estimate: Median

True

No restriction

With restriction
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Table 3: Results of Monte Carlo Simulation (DGP 3)

(i) MISE of f(y − p)
Without SR With SR

K = 3 0.0157 0.0037
K = 4 0.0189 0.0063
K = 5 0.5222 0.0076

(ii) β0

Without SR With SR

Bias RMSE Bias RMSE

K = 3 0.0217 0.0791 0.0053 0.0352
K = 4 0.0225 0.0912 0.0070 0.0468
K = 5 0.0019 0.3024 0.0074 0.0538

(iii) β1

Without SR With SR

Bias RMSE Bias RMSE

K = 3 -0.0002 0.0119 -0.0005 0.0118
K = 4 -0.0004 0.0119 -0.0004 0.0119
K = 5 0.0024 0.0134 -0.0004 0.0119

Figure 3: Median and 95% CI for DGP 3

K = 3

Estimate: Median

True

No restriction

With restriction

K = 4

Estimate: Median

True

No restriction

With restriction
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5 Empirical Application: Automobile Demand

We now apply our semiparametric demand model to the Japanese automobile market to demon-

strate the practical relevance of our framework. In Section 5.1, we briefly explain the data and

relevant background of the industry. Then, we report the preliminary results estimated by the lin-

ear logit model of Berry (1994) and discuss the potential issues of this approach in Section 5.2. The

semiparametric specification of the demand model, as a remedy to the issues raised in the linear

logit model, is introduced in Section 5.3. The estimation results of the semiparametric model are

discussed in Section 5.4. We then use the estimated demand model to conduct counterfactual sim-

ulations in Section 6. Specifically, we evaluate (1) the impact of the feebate policy for eco-friendly

cars in Japan and (2) the effect of a hypothetical merger between two major Japanese automobile

manufacturers: Toyota and Honda.

5.1 Data

Two types of datasets are constructed. The first contains information on the Japanese automobile

market for the period 2006–2013, including product-level information on sales, prices, and product

characteristics for each year. Second, we construct the income distribution of Japanese households

as a source of consumer heterogeneity in the demand model (see Appendix A for details).

To construct the former dataset on the Japanese automobile market, we combine the cata-

log information of car models and the registration of newly purchased cars.22 The dataset is an

unbalanced panel at the model-and-year level.

We define the share of each car model in each year (sjt) as the fraction of the total number

of new car registrations (see footnote 22) over the total number of households in Japan, which is

sourced from annual reports of Population, demographics, and the number of households based on

the Basic Resident Register conducted by the Ministry of Internal Affairs and Communications23.

22The catalog information is obtained from the website CarView!, which provides the specifications of car
models and their list prices. Registrations of standard and compact cars are obtained from the Annual Report
of New Car Registrations (Shinsha Touroku Daisu Nempou) issued by the Japan Automobile Dealers Associa-
tion. Registrations for minicars are obtained from a report published by the Japan Mini Vehicle Association (see
https://www.zenkeijikyo.or.jp/statistics/tushokaku; in Japanese. Accessed on January 6, 2023.). Finally, we
source information on registrations for 20 top-selling imported cars from a report published by the Japan Automobile
Importers Association (see http://www.jaia-jp.org/english-transition/. Accessed on January 6, 2023).

23See https://www.soumu.go.jp/main_sosiki/jichi_gyousei/daityo/jinkou_jinkoudoutai-setaisuu.html

for details (In Japanese. Accessed on January 6, 2023).

23
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The share of households not purchasing any automobile is defined as s0t = 1−
∑

j∈Jt sjt, where Jt

represents all the available car models in market t (i.e., year t).

The observable product characteristics (Xjt) include (1) the ratio of horsepower to the weight of

the car (HP/WT), (2) car size (Size), (3) fuel efficiency (miles per gallon [MPG]), and (4) a dummy

variable that indicates whether the model has an automatic/continuously variable transmission

system (AT/CVT). 24 We also use dummy variables for minicar, foreign cars, and hybrid cars.25

The data also include the list price pjt offered by manufacturers. We construct an effective price

pejt that reflects the tax and subsidy. The effective price pejt is defined as follows

pejt = (1 + ρjt)pjt + Tjt − ESjt, (5.1)

where ρjt is the rate of the ad-valorem tax, including consumption tax (5% during the sample

period), Tjt is the specific tax, and ESjt is a subsidy for eco-friendly cars. All prices and taxes are

deflated by the 2015 consumer price index (CPI).

A unique feature of the Japanese automobile market in the sample period is the presence of

various tax and subsidy policies. The Japanese government introduced a feebate policy called the

eco-car subsidy (ES) program in 2009 as part of the economic stimulus measures in the wake of

the Great Recession. Table 4 provides an overview of the policy.26 The program has two phases.

The first phase of the ES program took place from April 2009 to September 2010.27 In this phase,

cash rebates of JPY 100, 000 (approximately USD 1,000) and JPY 50, 000 (approximately USD

500) were offered to normal cars and minicars that exceeded the 2010 fuel efficiency standard by

15%, respectively.28 In December 2011, the second phase of the ES program began, continuing

until January 2013. In the second phase, the eligibility to receive a cash rebate was made stricter

than in the first phase. JPY 100,000 and JPY 70,000 were subsidized to normal cars and minicars

exceeding the 2015 fuel efficiency standard, which is equivalent to 125% of the 2010 standard.

Table 5 shows the descriptive statistics of our dataset. A slight increase is seen in effective

24Given that the fuel efficiency is measured in kilometers per liter, we convert it to miles per gallon using mpg =
(fuelefficiency/1.60934)× 3.78541.

25A minicar is a category of automobile models with a length of 3.4 m or less, a width of 1.48 m or less, and a
height of 2.0 m or less, as well as a displacement level of 660 cc or less.

26The details of the tax policy are relegated to Appendix B.
27In the first phase of the ES policy, consumers had the option to apply for the ES program with a higher amount

of subsidy conditional on scrapping their existing vehicle if it was older than 13. See Kitano (2022) for details.
28We use an exchange rate of 100 JPY/USD throughout the paper.
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Table 4: Details of the Eco-car Subsidy

Phase 1 Phase 2

Period April 2009 to September 2010 December 2011 to January 2013
Subsidy to normal cars JPY 100,000 JPY 100,000
Subsidy to minicars JPY 50,000 JPY 70,000
Requirement exceeding the 2010 fuel efficiency standard by 15% exceeding the 2015 fuel efficiency standard

automobile prices after introducing the subsidy, and a substantial (approximately 24%) decrease

is shown in the total amount of taxes. This observation suggests that automakers respond to the

change in the tax policy (See Appendix B for the detail). The average amount of ES is JPY

19,000 during the policy periods. Regarding the automobile characteristics, while we do not find

significant differences in HP/WT, car size, and AT/CVT, we did observe an improvement in the

average MPG (fuel efficiency).

Table 5: Descriptive Statistics of Japanese Automobile Market Data

(1) 2006-2008 (2) 2009-2013

Mean SD Min Max Mean SD Min Max

log(sjt/s0t) -8.446 1.563 -13.766 -5.347 -8.860 1.782 -15.435 -5.052
pejt (JPY 1 Million) 2.731 1.966 0.780 12.870 2.772 1.973 0.771 13.946

Total Tax (JPY 1 Million) 0.186 0.113 0.030 0.682 0.144 0.120 0.008 0.707
ES (JPY 1 Million) 0.000 0.000 0.000 0.000 0.019 0.039 0.000 0.104
HP/WT 0.099 0.033 0.047 0.276 0.099 0.036 0.045 0.318
MPG 34.595 10.600 12.937 83.501 37.142 11.974 15.524 83.266
Car Size 7.485 0.676 6.115 8.855 7.520 0.673 6.115 8.825
AT/CVT 0.978 0.148 0.000 1.000 0.987 0.115 0.000 1.000
Minicar Dummy 0.202 0.402 0.000 1.000 0.198 0.399 0.000 1.000
Hybrid Car Dummy 0.008 0.090 0.000 1.000 0.042 0.201 0.000 1.000

N 495 827

Notes: sjt and s0t represent the market share of product j and outside good in market t . pejt indicates
the effective price that consumers face. “Total Tax” denotes the sum of automobile acquisition tax,
automobile weight tax, and automobile tax. “ES” is an abbreviation of “eco-car subsidy”. All the price
and tax variables are deflated by the 2015 CPI. Product attribute variables include the ratio of horse-
power to car weight (HP/WT), millage per gallon (MPG), car size (Size), dummy variables indicating
whether the model has an automatic or continuously variable transmission (AT/CVT Dummy), and
minicar and hybrid car (minicar and hybrid car dummy).

5.2 Preliminary Analysis based on Berry (1994)’s Logit Model

As a benchmark, we first estimate the parametric version of the demand model. Specifically, we

estimate the quasi-linear specification given by f(y − p) = α(y − p), where α is a parameter to be

estimated. Given that the income term y is canceled out, the model is reduced to the linear logit
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model of Berry (1994) as follows:29

ln

Å
sjt
s0t

ã
= αpejt + β′Xjt + θj + θt + ξjt, (5.2)

where sjt is the market share of the automobile j at year t, s0t is the market share of outside

option (i.e., not purchasing any car) at year t, pejt is the effective price of the automobile j at

year t, the vector Xjt includes HP/WT, MPG, car size, AC/CVT dummy, minicar dummy, and

hybrid car dummy. Furthermore, the maker fixed effects (θj) and year (market) fixed effects (θt)

are controlled. ξjt stands for the econometric error term.

We estimate this equation using ordinary least squares (OLS) and two-stage least squares (2SLS)

in which the set of instrumental variables (IV) are employed to deal with the endogeneity of effective

price pejt. We construct the instruments based on tax and subsidy policy by following Konishi

and Zhao (2017).30 Specifically, our instruments are defined by (1) the sum of the tax amount

of other products produced by the firm
∑

k∈Jf ,k 6=j(Tax)kt and (2) the sum of the tax amount of

competitors’ products
∑

k/∈Jf (Tax)kt. Note that Taxjt represents the sum of automobile acquisition

tax, automobile weight tax, and automobile tax of car model j in year t. This variable does not

include the eco-car subsidy.

We discuss the relevance of these instruments based on the first-stage regression in Table 6.

Regarding the independence of IVs, we should note some identification concerns. For instance, the

types of cars produced by automakers might be correlated with the policy design and, thus, with

our instrument. Specifically, the total amount of hybrid car production might have increased after

introducing the policy. To address this issue, we include dummies for minicars, foreign cars, and

hybrid cars as a covariate in the utility specification.

Table 6 shows the estimation results of Equation (5.2). Column (1) reports the results of OLS

estimation, in which the price is treated as an exogenous attribute. The results of the IV estimation

are then summarized in columns (2)–(4). Estimated coefficients have the expected signs. By

29To be precise, we also omit the budget constraint so we can derive the linear logit model of Berry (1994). Even if
the quasi-linear specification is assumed in our model, the presence of the budget constraint is a source of consumer
heterogeneity. Thus, the budget constraint does not allow us to use a linear regression model, as in Berry (1994).

30We also use differentiation instruments proposed by Gandhi and Houde (2019) to assess its performance. More-
over, we attempted to use traditional BLP instruments for car characteristics, though the first-stage regression of a
parametric IV logit model was substantially weaker than differentiation IV. The result of using traditional BLP IV is
not reported. This finding is consistent with results obtained by Konishi and Zhao (2017) (see Appendix D in their
paper).
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comparing the results of OLS and IV estimation, the price coefficient seems to be underestimated

in OLS (i.e., the OLS estimate is biased towards zero). Regarding the validity of the instruments,

the result shown in column (3) suggests that the tax-based instrument has the highest value of

Kleibergen–Paap F statistics in the first stage. Based on the above results, we use a tax-based

instrument to estimate the semiparametric demand model. We also use column (3) as a parameter

of the simple logit model in simulation analysis in Section 6.

While the estimation of the linear logit model is useful as a preliminary analysis, the model

has several issues for applications. First, as discussed in Section 2.4, the quasi-linear assumption

imposes a strict restriction on the pattern of price elasticity. The relationship between the own-

price elasticity and price is linear under a simple logit model. We will revisit this point when we

estimate the price elasticity in a semiparametric demand model. In addition, since the demand

curve is always log-concave in price under a simple logit model, the pass-through rate is bounded

by 1 (Weyl and Fabinger 2013). Such property may imply an underestimation of the pass-through

rate of the subsidy.

Table 6: Preliminary Estimation Results of Equation (5.2)

(1) (2) (3) (4)

OLS IV IV IV

Effective Price (pejt) -0.402 -0.646 -0.519 -0.480

(0.030) (0.119) (0.052) (0.045)
HP/WT 5.898 13.598 9.596 8.382

(1.578) (3.830) (1.992) (1.881)
MPG 0.105 0.100 0.103 0.103

(0.006) (0.007) (0.006) (0.006)
Car Size 1.686 1.976 1.826 1.780

(0.115) (0.163) (0.120) (0.117)
AT/CVT 0.257 0.437 0.343 0.315

(0.385) (0.385) (0.381) (0.381)

Differentiation IV on car attribute No Yes No Yes
Tax-based IV No No Yes Yes

Kleibergen–Paap F statistic 21.650 74.359 33.830
Hansen J statistics 25.702 2.249 27.792
N 1322 1322 1322 1322

Notes: All regression includes year fixed effects, firm fixed effects, minicar dummy
and hybrid car dummy. The robust standard error is reported in parentheses.
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5.3 Semiparametric Demand Specification

We now take the semiparametric approach introduced in Section 2 to overcome the potential issues

of the simple logit model we discussed. The following specification is considered for the conditional

indirect utility:

Vijt = f(yit − pejt) + β′Xjt + θj + θt + ξjt + εijt, (∀j ∈ {1, · · · , Jt}) (5.3)

Vi0t = f(yit) + εi0t (5.4)

where f(·) is a weakly increasing continuous function, yit stands for the real income for individual

i at year t31, and εijt is idiosyncratic shock following Type-I extreme value distribution. The

definition of all the other components is the same as in Equation (5.2). We make use of tax-based

IV defined in the previous section (i.e., w1,kt ≡
∑

k∈Jf ,k 6=j(Tax)kt, and w2,kt ≡
∑

k/∈Jf (Tax)kt) to

estimate f(.) and β in the model. Specifically, the matrix of IVs defined in equation (3.6) is based

on p(w) = (1, w1,kt, w2,kt, w
2
1,kt, w

2
2,kt, w

3
1,kt, w

3
2,kt) and the tensor products of p(w) and Xjt.

The income effect term f(y − p) is approximated using the following:

f(y − p) =
−1∑K

k=1 πkb
K
k (y − p)

,

where bKk (x) is a Bernstein polynomial defined in (3.2). We set K = 4 in estimation. The above

approximation imposes the condition that limx→0 f(x) = −∞. This restriction makes the de-

mand model continuous regarding prices, which is critical when subsequently simulating a pricing

equilibrium.

Due to the presence of the budget constraint in the optimization problem, the individual choice

probability sijt(·) defined in Equation (2.10) can be discontinuous with respect to the price at

pjt = yit, as sijt = 0 when pjt > yit. Given that we approximate aggregate demand by simulating a

finite number of consumers, the resulting demand function may also have a range of discontinuous

points. While such discontinuity is not detrimental to estimation where prices are fixed as a covari-

ate, it makes the supply-side analysis (i.e., solving the Bertrand pricing equilibrium) numerically

challenging.

31See the last paragraph of this section for the data generating process of real income.
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To avoid this issue, we imposed a restriction whereby limp→y f(y − p) = −∞ so that the

individual choice probability sijt(·) converges to zero as the price gets closer to the income level.

This property ensures the continuity of the demand function.

The aggregate demand is determined by integrating the individual choice probability with in-

come distribution. We assume the income distribution to be the log-normal distribution with mean

µt and standard deviation σt: LN(µt, σ
2
t ). We estimate these two parameters (µt, σt) for each

year using the data from the Comprehensive Survey of Living Conditions. See Appendix A for

the details. To numerically compute the integral, we use quasi-random sampling. We draw 1,000

consumers from the estimated distribution by a Halton sequence.

5.4 Estimation Results of Semiparametric Model

Figure 4 and Table 7 report estimates of the income-effect term f(y − p) and linear parameters β,

respectively. Figure 4 shows that the income effect term f(yit− pjt) is nonlinear and concave. The

marginal utility from the disposable income after purchasing an automobile is higher for low-income

households. Table 7 reports the estimation results of linear parameters in Equation (5.3). The point

estimates are comparable with the simple logit model, except for the HP/WT. The coefficient for

HP/WT is approximately 1.5 times larger when we employ the semiparametric estimation (see

column (3) of Table 6).

Figure 4: Estimation of f(yit − pjt)

(i) f(y − p) is plotted. (ii) − log10(−f(y − p)) is plotted.

Note: Point estimate and 95% confidence band based on 200 times bootstrap sampling are reported. The range of

y − p plotted is JPY 0.5 to 10 Million.
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Table 7: Estimation of Linear Parameters

Estimate 95% CI

Constant -24.705 [ -26.655, -21.355]
HP/WT 13.635 [ 7.931, 20.102]
MPG 0.086 [ 0.052, 0.105]
Car Size 2.178 [ 1.781, 2.704]
AT/CVT 0.143 [ -0.802, 1.328]

N 1322

Note: The point estimate of selected linear parameters
and 95% confidence interval are reported. The confi-
dence interval is constructed using 200 bootstrap sam-
ples. See Theorem 5.2 of Chen and Pouzo (2015) for
the details. Minicar dummy, hybrid car dummy, year
fixed effects, and market fixed effects are also included
but not reported.

Based on the estimated demand function, we calculate the own-price elasticity. Figure 5 shows

the estimated own-price elasticity as a function of the effective price of automobiles. We compare

the own-price elasticity based on our demand with that from a simple logit model (column (3) of

Table 6). As we have discussed in Section 5.2, the simple logit model implies a linear relationship

between elasticity and price (See Equation (2.11) in Section 2.4). However, our semiparametric

model reveals a nonlinear relationship where the estimated elasticity is relatively constant in the

range of JPY 2 to 10 million. As a result, the elasticity estimated by simple logit suffers from

underestimation for inexpensive cars (such as mini-car) and from overestimation for luxury cars.

Figure 5: Estimated Own-Price Elasticity
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6 Policy Simulations: Pass-Through and Merger Analysis

We conduct two counterfactual simulations using our estimated semiparametric model. In the first

simulation, the eco-car subsidy program is evaluated by assessing the pass-through of the subsidy

and its welfare impacts. As discussed in Section 2.4, our demand model can flexibly capture the

curvature of the demand function, which has key implications for the pass-through. Second, we

conduct a merger simulation between two automobile manufacturers.

Below, we begin by introducing a supply model in Section 6.1 to estimate the marginal costs of

car models and simulate counterfactual equilibria. We then conduct counterfactual simulations in

Sections 6.2 and 6.3.

6.1 Supply Model

To predict a counterfactual equilibrium, we introduce a supply model for automobile manufacturers.

We adopt a model of Bertrand competition with differentiated products, as in BLP and Nevo (2001).

Automobile manufacturers are multiproduct oligopolists that compete in prices. The profit for

manufacturer f in year t is given as follows:

πft =
∑
j∈Jft

(pjt −mcjt)qjt (pet ) , (6.1)

where mcjt is the marginal cost of car model j in year t. We assume a constant marginal cost. The

variable pet is a vector of effective prices in market t and defined as pet = {pejt}j∈Jt . Note that we

distinguish between the price charged by a firm pjt and the effective price pejt that reflects the tax

and subsidy. Remember that the effective price is given by pejt = (1 + ρjt)pjt + Tjt − ESjt. Lastly,

Jft denotes the set of car models produced by manufacturer f in year t.

The first-order condition (FOC) of the profit maximization problem is as follows:

∂πft
∂pjt

= qjt (pet ) + (1 + ρjt)
∑
l∈Jft

(plt −mclt)
∂qlt
∂pejt

= 0, ∀j ∈ Jft (6.2)

By stacking the FOCs across all products, we obtain the equilibrium conditions for year t in the
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following matrix notation:

q̃t(p
e
t )−Dt(p

e
t )(pt −mct) = 0, (6.3)

where q̃t = (
q1,t

1+ρ1t
, · · · , qJt,t

1+ρJt,t
)′, pt = (p1,t, · · · , pJt,t)′, and mct = (mc1,t, · · · ,mcJt,t)′. The matrix

Dt is a Jt×Jt matrix defined as Dt(p
e
t ) = Ωt�S(pet ). Here the operator � denotes the element-by-

element multiplication of matrices. Ωt, meanwhile, denotes the ownership structure of car models

sold in market t. More specifically, the (i, j) element of the matrix Ωt takes a value of 1 if product

i and j are sold by the same manufacturer and 0 otherwise. Lastly, the (i, j) element of matrix

S(pet ) is defined as −∂qjt(p
e
t )

∂peit
.

To use this supply model for simulations, we must first estimate the model primitives, namely

the demand function and marginal costs. The demand function is estimated in Section 5. To

estimate the vector of marginal cost mct, we use the equilibrium conditions derived above. To be

precise, given that the matrix S(pet ) can be calculated from the demand estimates, we can invert

Equation (6.3) to back out the marginal costs mct.

Given the estimated model primitives, we conduct a simulation analysis by numerically solving

Equation (6.3) for a vector of equilibrium prices. To do so, we use the algorithm proposed by

Morrow and Skerlos (2011).32

6.2 Simulation 1: Pass-through Analysis of Feebate Policy

In this subsection, we conduct a pass-through analysis of eco-car subsidies. To do this, we simulate

the market equilibrium if the subsidy for eligible automobile models that satisfy the fuel efficiency

requirements is removed (i.e., ESjt = 0 for all j in Equation (5.1)). We then calculate how much of

the subsidy amount was attributed to consumers and producers. Note that our simulation analysis

aims to highlight the value of our demand framework in the pass-through analysis rather than fully

evaluating the Japanese feebate policy.33

32The algorithm of Morrow and Skerlos (2011) is used in pyBLP package provided by Conlon and Gortmaker (2020)
33We abstract away several institutional features in our analysis. First, the actual policy started in the middle

of the year, i.e., in April, but our data is annual, so we cannot fully account for this point. Thus, we assume that
the first phase of the ES policy was implemented from April 2009 to September 2010 and that the second phase ran
from December 2011 to January 2013. See Konishi and Zhao (2017), who analyze the policy using quarterly data.
Second, in the first phase of the ES policy, consumers can apply for the ES program with a higher amount of subsidy
if they scrap an existing vehicle that is older than 13. To analyze the scrap subsidy, we must incorporate consumer
heterogeneity for the age of the owned vehicle. See Kitano (2022) for an evaluation of the feebate policy with full
consideration of the scrap subsidy.
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First, we report the pass-through rate in Table 8. We define the pass-through rate (PTRjt) as

the ratio of changes in effective price that consumers face to the amount of ES:

PTRjt =
pe
′
jt − pejt
ESjt

,

where pe
′
jt indicates the simulated price in the counterfactual case without ES. We find that the

average pass-through rate under our semiparametric model is 1.282, while the rate implied by a

simple logit model is 0.991. In terms of price reduction, the ES policy decreased the effective price

of eligible car models by 6.4% on average.

Table 8: Price Change Due to Ecocar Subsidy

Mean SD P25 Median P75

A: PTRjt
Semi-parametric 1.282 0.080 1.221 1.259 1.335
Logit 0.991 0.009 0.980 0.993 0.999

B: Percentage Change in Effective Price
Semi-parametric -6.36% 2.56% -4.29% -6.09% -7.96%
Logit -4.93% 1.79% -3.50% -4.85% -5.93%

Note: PTRjt = (pe
′
jt − pejt)/ESjt. Percentage change in effective price

due to ecocar subsidy is defined as 100 ∗ (pe
′
jt − pejt)/pe

′
jt. P25 and P75

represent the 25th and 75th percentiles, respectively.

Figure 6 shows the relationship between the pass-through rate and the effective price for our

semiparametric model and a simple logit model. It indicates significant heterogeneity in the esti-

mated pass-through rate in the semiparametric specification. A less expensive car shows a higher

pass-through rate. In comparison, the pass-through rate under a quasi-linear logit model is bounded

by 1. This result supports the argument put forth by Weyl and Fabinger (2013) that log-concave

demand always predicts an incomplete pass-through (i.e., the pass-through rate is below 1) in

a symmetric oligopoly model. Our semiparametric model does not suffer from such an a priori

restriction on the demand curvature and the pass-through rate.

To further compare our demand model to a simple logit model, we create a binned scatter plot

of the pass-through rate against the own-price elasticity in Figure 7. For a given price elasticity,

our semiparametric model predicts a higher pass-through rate than a simple logit model. These

differences can be attributed to the difference in demand curvature (i.e., the second-order derivative)

across the two demand models.
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Figure 6: Pass-Through Rate of the Eco-Car Subsidy
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Note: The car models whose effective price is less than JPY 8 million are plotted.

Next, we quantify the policy impact on social welfare. We calculate the changes in producer

surplus (PSt), tax revenues (TRt), and the consumer’s aggregate compensating variation (CVt).
34

To calculate the compensating variation (CV), we use the result of Dagsvik and Karlström (2005).35

Table 9 reports the results. Overall, the eco-car subsidy policy improves the total welfare by JPY

230 billion (around 2.3 billion USD) annually. This improvement is likely due to the subsidy

mitigating the preexisting distortion caused by market power (Buchanan 1969; Fowlie et al. 2016).

Table 9: Welfare Impact of Ecocar Subsidy

2009 2010 2012 Average

(i) Semi-parametric
Consumer Surplus 199.9 277.6 379.1 285.5
Profit 110.0 147.6 201.0 152.9
Tax Revenue -143.3 -197.6 -274.7 -205.2
Total Welfare 166.5 227.5 305.4 233.2

(ii) Simple Logit
Consumer Surplus 156.0 215.5 299.0 223.5
Profit 141.6 195.3 268.3 201.7
Tax Revenue -152.1 -209.6 -291.7 -217.8
Total Welfare 145.5 201.3 275.5 207.5

Note: The unit is JPY 1 Billion. The average of 2009, 2010, and
2012 is reported in the final column.

While a simple quasi-linear logit model assumes the same consumer surplus among consumers,

34The producer surplus is PSt =
∑
f∈F

∑
j∈Jft

(pjt − m̂cjt)qjt(p
e
t) and the tax revenue is given by TRt =∑

f∈F
∑
j∈Jft

(pjtρjt + Tjt − ESjt)qjt(pe
t).

35See Appendix C for more detail on how CV is calculated.
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Figure 7: Relationship between Pass-Through Rate of the Eco-Car Subsidy and Own-Price Elas-
ticity
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Note: The car models whose estimated own price elasticity is less than -1 and more than -4 are plotted.

a semiparametric specification can factor in the heterogeneity of compensating variation. We ap-

ply the results from Dagsvik and Karlström (2005) to calculate the distribution of CV in Table

10. We find a large standard deviation, which implies significant heterogeneity among consumers.

The table further suggests that while almost half of the consumers are unaffected by the eco-car

subsidy, a large CV is observed at the right tail of the distribution, from approximately JPY 15,500

(around USD 155) in 2009 to JPY 28,600 (around USD 286) in 2012 at the 90th percentile. Such

heterogeneity is attributed to the observations that (i) the eco-car subsidy only affects the welfare

of consumers who have the potential to purchase eco-cars, and (ii) more than 90% of consumers

do not buy cars in any year (i.e., s0t is larger than 0.9). Meanwhile, the CV implied by the simple

logit model is between the median and the 75th percentile of the distribution under our model with

a nonparametric income effect. This result suggests the importance of incorporating the income

effect when analyzing the distributional effects of the policy on consumers.

6.3 Simulation 2: Merger Simulation

We conduct a merger simulation analysis by applying our demand model to a hypothetical merger

between Toyota and Honda. As we did in the pass-through analysis, we compare the price effects

of a merger predicted by our demand model and the quasi-linear logit model.

To do this, we simulate the outcome of the merger by solving the equilibrium conditions under a
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Table 10: The Distribution of CV by Year (Ecocar Subsidy)

Semiparametric Logit

Year Mean SD P10 P25 Median P75 P90 Mean

2009 3779 7353 0 0 56 3289 15480 2951
2010 5201 10507 0 0 80 4114 20911 4039
2012 6998 12798 0 0 164 7230 28639 5519

Note: The unit is JPY. P10, P25, P75, and P90 represent the 10th, 25th, 75th, and
90th percentile points respectively. Under a simple logit, there is no heterogeneity
in CV.

counterfactual ownership structure. Specifically, we set the ownership matrix Ωt such that the car

models produced by Toyota and Honda are owned by the same firm. The hypothetical merged firm

chooses prices to maximize joint profit. We use the estimated marginal costs and do not consider

efficiency gains from the merger. Our focus in this work is on the anti-competitive effects, which

are of primary interest in the antitrust practice and are determined by the demand structure.

Table 11 presents the simulation results. The price effects of a merger are higher in our semipara-

metric model than in a simple logit model. While the product prices increase by 2.5% for Toyota

and 6.8% for Honda under our demand specification, a simple logit demand predicts increases of

1.0% for Toyota and 2.4% for Honda.

Table 11: Descriptive Statistics of Merger Simulation

Mean SD P25 Median P75

A: Observed Effective Price (Unit: JPY 1 Million)
(1) Toyota 2.76 2.01 1.77 2.18 2.98
(2) Honda 2.51 1.27 1.46 2.33 2.99

B: Effective price change in percentage (Semi-parametric)
(1) Toyota 2.52% 0.50% 2.26% 2.53% 2.83%
(2) Honda 6.80% 0.70% 6.31% 6.99% 7.27%

C: Effective price change in percentage (Logit)
(1) Toyota 1.05% 0.45% 0.76% 1.02% 1.32%
(2) Honda 2.45% 1.11% 1.63% 2.19% 3.26%

Note: P25 and P75 represent the 25th and 75th percentiles.

One of the most notable differences between the semiparametric model and the simple logit

model is how the merger effect varies across products. Figure 8 plots the relationship between

the merger effect and product prices. In the right panel of Figure 8 for a simple logit model, we

observe a negative relationship, implying that the merger effect is larger for cheaper products. This
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correlation is due to the functional form restriction on price elasticity discussed in Section 2.4.

Products are less elastic for less expensive products in the simple logit model, which suggests that

the merged company can easily increase the prices of its less expensive products. However, the

price effects under our demand model (left panel of Figure 8) do not display such a monotonic

relationship. This observation is partly because the price elasticity in our demand model does not

show such a mechanical pattern created in the simple logit model.

In addition to price elasticity, demand curvature also plays a significant role in determining

the price effects of mergers. Figure 9 illustrates the relationship between the price effect and the

own-price elasticity. Conditional on the price elasticity, our demand model predicts higher price

effects of the merger. It is worth noting that this finding aligns with the argument regarding the

pass-through rate in Figure 7.

Figure 8: Price Effect of Merger Between Toyota and Honda
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Note: The car models whose effective price is less than JPY 8 million are plotted.

Lastly, Table 12 shows the welfare effects of the merger. Our semiparametric model predicts

that the merger will result in a larger loss of consumer surplus and total welfare, which reflects the

larger price effects in the semiparametric specification.

7 Conclusion

This paper proposes a new empirical framework for a differentiated product demand model with

a nonparametric income effect. The proposed model is a semiparametric model with endogeneity.
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Figure 9: Relationship between Price Effect of Merger and Own Price Elasticity
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Table 12: Welfare Impact of Merger

Semiparametric Logit

Consumer Surplus -144.7 -60.6
Profit 23.3 2.8
Tax Revenue -9.4 -0.4
Total Welfare -130.8 -58.1

Note: The average welfare impact from 2006 to 2013 is
reported, as measured in Billion JPY.

We estimate the model by combining the nested fixed-point algorithm proposed by BLP and a

sieve approximation with shape restriction. Notably, our Monte Carlo simulations suggest signif-

icant gains in estimating the nonparametric term of the income effect by incorporating the shape

restriction.

Furthermore, our empirical application using Japanese automobile data demonstrates the im-

portance of a flexible income effect. A quasi-linear specification greatly restricts the estimated own-

price elasticity, yet our demand model does not suffer from such a restriction. In the pass-through

analysis and the merger simulation, our demand model offers qualitatively and quantitatively dif-

ferent results than the parametric specification.
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Appendix

A Income Distribution

Income distribution is obtained from the Comprehensive Survey of Living Conditions (CSLC),

which is conducted annually in Japan by the Ministry of Health, Labor, and Welfare (MHLW).

Specifically, we used the summary of CSLC annual data circulated by MHLW in which the median

and the average income of the surveyed population are reported. In our analysis, we assume that the

annual income follows a log-normal distribution (= LN(µt, σ
2
t )). The parameters are calibrated

using the property that E(y) = exp(µ + σ2/2) and Median(y) = exp(µ). Table A1 shows the

nominal and real (i.e., deflated by 2015 CPI) average and median income and the parameters of

income distribution from 2006 to 2013.

Table A1: Descriptive Statistics of Annual Income Data from CSLC

Year Average(a) Median(a) Average
(Deflated)

Median
(Deflated)

µt
(b) σt

(b)

2006 566.8 451 583.1276 463.9918 6.1399 0.6761
2007 556.2 448 572.2222 460.9053 6.1332 0.6578
2008 547.5 427 555.2738 433.0629 6.0709 0.7051
2009 549.6 438 565.4321 450.6173 6.1106 0.6738
2010 538.0 427 557.5130 442.4870 6.0924 0.6798
2011 548.2 432 569.2627 448.5981 6.1061 0.6902
2012 537.2 432 558.4200 449.0644 6.1072 0.6602
2013 528.9 415 547.5155 429.6066 6.0629 0.6964

Notes: The unit used in columns 2–5 is JPY 10 thousands. (a): Average and median income are sourced
from the summary of CSLC circulated by MHLW. (b) The parameters of the log-normal distribution is
calculated based on deflated average/median income.

B Tax Policy in Japanese Automobile Market

This appendix explains the tax system in the Japanese automobile market. Under the Japanese

vehicle tax system, consumers must pay three types of car tax: (1) acquisition tax, (2) weight tax,

and (3) automobile tax. The acquisition tax is an ad valorem tax, while the other two are specific

taxes that depend on the weight and engine displacement of the car model.

First, the automobile acquisition tax is an ad valorem tax collected by each prefecture, which

charges 5% (3%) of the purchase price before March 2014 (after April 2014). Note that the au-

tomobile acquisition tax was abolished in October 2019, with a new taxation system called the
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environmental performance discount (Kankyo-Seino-Wari in Japanese) being rolled out in Octo-

ber 2019. Under this new system, at most 3% of the purchase price is imposed depending on the

automobile’s fuel efficiency.

Second, the rate of the automobile weight tax was JPY 12, 600 per 0.5 tons of vehicle weight

before April 2010, JPY 10,000 per ton from April 2010 to April 2012, and JPY 8,200 per ton after

May 2012.

Third, the automobile tax is an additional tax collected by each prefecture. In recent years,

the size of the automobile tax has been modified several times. For instance, the automobile tax

on minicars was hiked from JPY 7, 200 to JPY 10, 800, while the range of the automobile tax on

normal cars was raised from JPY 29, 500–111, 000 to JPY 25, 000–110, 000 in October 2019.

Furthermore, in 2009, a tax reduction was introduced for car models that satisfy criteria based

on fuel efficiency and emissions standards. This tax reduction scheme is called the eco-car tax

reduction (hereafter ETR). The changes in the tax reduction rates and the criteria of the ETR

program are described in Table A2. The eligibility for the tax reduction was revised in 2012, 2014,

and 2015. For instance, from 2009 to 2011, the acquisition tax on new cars that met the 2010 fuel

efficiency standards by 15% or better and received a four-star rating for the emission standard in

2005 was cut by 50%, while the automobile tax on these cars was reduced by 25%.
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Table A2: Eligibility for Tax Reduction Under the ETR program

Acquisition tax Weight tax Automobile tax
Normal Minicar

(1) 2009−2011
EV, FCV, Plug-in Hybrid, etc. Exempted Exempted 50% cut

No exemption
125% or above 2010 standard 75% cut 75% cut 50% cut
115% or above 2010 standard 50% cut 50% cut 25% cut

(2) 2012−2013
EV, FCV, Plug-in Hybrid, etc. Exempted Exempted 50% cut

No exemption120% or above 2015 standard Exempted Exempted 50% cut
110% or above 2015 standard 75% cut 75% cut 50% cut
100% or above 2015 standard 50% cut 50% cut 25% cut

(3) 2014
EV, FCV, Plug-in Hybrid, etc. Exempted Exempted 75% cut

No exemption120% or above 2015 standard Exempted Exempted 75% cut
110% or above 2015 standard 80% cut 75% cut 50% cut
100% or above 2015 standard 60% cut 50% cut 50% cut

(4) 2015−2016
EV, FCV, Plug-in Hybrid, etc. Exempted Exempted 75% cut 75% cut

120% or above 2020 standard Exempted Exempted 75% cut 50% cut
110% or above 2020 standard 80% cut 75% cut 75% cut 25% cut
100% of above 2020 standard 60% cut 50% cut 75% cut 25% cut
110% above 2015 standard 40% cut 25% cut 50% cut

No exemption
105% above 2015 standard 20% cut 25% cut 50% cut

Notes: For all tax reductions, automobiles must receive a four-star rating for the emission standards
in 2005. ETR: Eco-car Tax Reduction, ES: Eco-Car Subsidy, EV: Electronic Vehicle, FCV: Fuel-
Cell Vehicle.

C Measurement of Compensating Variation

C.1 Overview

We measure changes in consumer welfare associated with a price change using compensating varia-

tion (hereafter CV), which is the amount of money a consumer would need to be indifferent to the

change. Let the baseline price be p and the counterfactual price p′. The indirect utility is defined

as follows:

W (p, y) = max
j∈Ji

Vij , (C.1)
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where Vij = vj(pj , y) + εij and εij has the joint cumulative distribution F (ε1, · · · , εJt). In our

application, vj(pj , y) = f(y − pj) + βXj + ξj holds.

We denote the individual-level CV using cv, which is defined as

W (p, y) = W (p′, y − cv). (C.2)

CV should be interpreted as a random variable because it depends on the idiosyncratic shock

(ε1, · · · , εJt). Consequently, we focus on the mean CV E(cv) as a welfare measure.

If ones assume the linear utility, measuring CV can be relatively straightforward when using

the log-sum formula proposed by Small and Rosen (1981). In our paper, we use the theoretical

results produced by Dagsvik and Karlström (2005) to calculate E(cv).36 Using their method, the

computation of CV reduces to a sum of a one-dimensional integral, which can be easily calculated

using numerical methods. Moreover, when the idiosyncratic shock ε follows the i.i.d. Type I

extreme-value distribution, the calculation of the integral becomes much simpler.

To explain the method proposed by Dagsvik and Karlström (2005), we first define the random

expenditure function Y (p, u) by using the following equation:

u = W (p, Y (p, u)). (C.3)

The expenditure function Y (p, u) is interpreted as the income level under which the consumer can

achieve the utility level of u when the price vector is p.

The CV can be defined as

cv = y − Y (p′,W (p, y)). (C.4)

Using this equation, the expected CV E(cv) can be obtained by calculating E[Y (p′,W (p, y))].37

Dagsvik and Karlström (2005) formulates useful theorems to derive the distribution function of the

random variable Y (p, u). Below, we present an overview of this derivation.

36Griffith et al. (2018) also use this method to derive the mean CV in their application.
37This is because by substituting (C.4) to (C.2), we get W (p, y) = W (p′, Y (p′,W (p, y))), where the equality must

hold by the definition of the expenditure function.
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C.2 Derivation of the general case

First, we consider the joint distribution of the random expenditure Y (p, u) and the optimal choice

J(p, y), which is defined by

J(p, y) = arg max
j∈J

vj(pj , y) + εij .

Theorem 3 of Dagsvik and Karlström (2005) derives the formal expression of this joint distri-

bution:

P
(
Y (p′,W (p, y)) > z, J(p, y) = i)

=


∫
Fi(u− h1(p1, y, p′1, z), · · · , u− hJ(pJ , y, p

′
J , z))du if 0 < z < yi(pi, y, p

′
i)

0 if z ≥ yi(pi, y, p′i)

where Fi denotes the partial derivative of the cumulative distribution F (ε1, · · · , εJt) with respect

to i-th input. hj(pj , y, p
′
j , z) is defined by

hj(pj , y, p
′
j , z) ≡ max

{
vj(pj , y), vj(p

′
j , z)

}
and yj(pj , y, p

′
j) is defined by the following equation.

vj(pj , y) = vj(p
′
j , yj(pj , y, p

′
j)).

Intuitively speaking, yj(pj , y, p
′
j) is the income level needed to obtain the utility level of vj(pj , y)

when the price is p′j .

We now derive the marginal distribution of the random expenditure Y (p, u), which will be used

to calculate E[Y (p′,W (p, y))]. Corollary 2 of Dagsvik and Karlström (2005) has shown that the

marginal distribution is derived as follows:38

P(Y (p′,W (p, y)) > z) =∑
i∈J

Ii(pi, y, p
′
i, z)×

∫
Fi(u− h1(p1, y, p′1, z), · · · , u− hJ(pJ , y, p

′
J , z))du.

38The marginal distribution can be obtained by adding up the joint distribution for goods i, thus satisfying
Ij(pi, y, p

′
i, z) = 1. Note that z < yi(pi, y, p

′
i) is equivalent to vj(pj , y) > vj(p

′
j , z).
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where the indicator function Ii(pi, y, p
′
i, z) is defined as

Ii(pi, y, p
′
i, z) =

 1 if vi(pi, y) > vi(p
′
i, z)

0 otherwise
(C.5)

Using the marginal distribution, we now calculate the expectation E(Y (p′,W (p, y))) by

E(Y (p′,W (p, y))) =

∫ ∞
0

Y (p′,W (p, y)) · dP(Y (p′,W (p, y)) ≤ z)

=

∫ ∞
0

P(Y (p′,W (p, y)) > z)dz (C.6)

=
∑
i∈J

∫ yi(pi,y,p
′
i)

0

∫
Fi(u− h1(p1, y, p′1, z), · · · , u− hJ(pJ , y, p

′
J , z))dudz (C.7)

The second equality uses Lemma 1 of Dagsvik and Karlström (2005).39

C.3 Special Case: i.i.d. Type-1 Extreme Value Distribution

When the idiosyncratic shock follows Type-I extreme value distribution, the integral of choice

probability has a closed form expression (McFadden, 1981) 40. Therefore, in this case, the joint

distribution of expenditure function and the choice can be rewritten as, for z < yi(pi, y, p
′
i),

P(Y (p′,W (p, y)) > z, J(p, y) = i)

=

∫
Fi(u− h1(p1, y, p′1, z), u− h2(p2, y, p′2, z), · · · , u− hJ(pJ , y, p

′
J , z))du

=
exp(hi(pi, y, p

′
i, z))∑

k∈J exp(hk(pk, y, p
′
k, z))

=
exp(vi(pi, y))∑

k∈J exp(max{vk(p′k, z), vk(pk, y)})

The final equality holds by the definition of hi(pi, y, p
′
i, z) and the restriction of z < yi(pi, y, p

′
i).

41

39Let G be the cumulative distribution function of a random variable x. Lemma 1 of Dagsvik and Karlström (2005)
shows that, for any α ≥ 1,

∫∞
0
xαdG(x) = α

∫∞
0
xα−1(1−G(x))dx. We apply this lemma when α = 1.

40This is a special case of the Generalized Extreme Value (GEV) model in which the choice probability of j-th
alternative can be expressed as Pj =

∫ +∞
−∞ Fj(vj + εj − v1, · · · , vj + εj − vJ)dεj = yjGj/G using some function

G(ev1 , ev2 , · · · , evJ ) having the following properties: (i) G(ev1 , ev2 , · · · , evJ ) ≥ 0 for all j, (ii) G is linearly homo-
geneous (i.e. G(ρev1 , ρev2 , · · · , ρevJ ) = ρG(ev1 , ev2 , · · · , evJ )), (iii) limvk→∞G = +∞ for all k, and (iv) n-th order
derivative is non-negative if n is odd, and non-positive if n is even. When the error term follows Type-I extreme
value distribution, the function G corresponds to G =

∑
j∈J e

vj . See McFadden (1981) for details.
41z < yi(pi, y, p

′
i) is equivalent to vi(pi, y) > vi(p

′
i, z). Thus, hi(pi, y, p

′
i, z) = max {vi(pi, y), vi(p

′
i, z)} = vi(pi, y).
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Based on this result, the probability distribution of the expenditure function can be derived as

follows:

P(Y (p′,W (p, y)) > z) =
∑
i∈J

Ii(pi, y, p
′
i, z)

exp(vi(p, y))∑
k∈J exp(max{vk(p′k, z), vk(pk, y)})

Finally, by (C.7), the expectation of expenditure function is

E(Y (p′,W (p, y)) =
∑
i∈J

∫ yi(pi,y,p
′
i)

0

exp(vi(pi, y))∑
k∈J exp(max{vk(p′k, z), vk(pk, y)})

dz,

which is the final result of Corollary 5 of Dagsvik and Karlström (2005).

As we argued at the beginning of this section, the computation of E(cv) reduces to the sum of a

one-dimensional integral under the standard assumptions (i.e. the error term follows Type-I extreme

value distribution). Furthermore, in our counterfactual analysis, because none of the automobile

characteristics change except for the price, yi(pi, y, p
′
i) can be derived by yi(pi, y, p

′
i) = y + p′i − pi.

Finally, by applying the technique of numerical integration (e.g., Gauss-Legendre quadrature), we

can compute the expectation of expenditure function and the expectation of CV.
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