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Abstract

This paper proposes a semiparametric discrete choice model that incorporates a nonpara-

metric specification for income effects. The model allows for the flexible estimation of demand

curvature, which has significant implications for pricing and policy analysis in oligopolistic mar-

kets. Our estimation algorithm adopts a method of sieve approximation with shape restrictions

in a nested fixed-point algorithm. Applying this framework to the Japanese automobile market,

we conduct a pass-through analysis of feebates and merger simulations. Our model predicts a

higher pass-through rate and more significant merger effects than parametric demand models,

highlighting the importance of flexibly estimating demand curvature.
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1 Introduction

Estimation of a consumer demand model is a vital part of empirical research in industrial orga-

nization and related fields. Price elasticity and the substitution patterns implied by the demand

model are key factors firms must consider when making pricing decisions in oligopolistic markets.

Consumer demand is also essential for evaluating the welfare consequences of a firm’s strategic

behavior and policy changes. Therefore, accurate measurement of consumer demand is critical for

various applications, including merger analysis (Nevo, 2000a), pass-through analysis of cost shocks

and taxes (Weyl and Fabinger, 2013), and the introduction of new products (Petrin, 2002).

Given the practical importance of demand models, a vast body of literature in empirical in-

dustrial organization has proposed econometric methods for estimating consumer demand for dif-

ferentiated products (Berry and Haile, 2021; Gandhi and Nevo, 2021). The majority of existing

frameworks rely on parametric specifications because a fully flexible model for differentiated product

demand involves a significant number of parameters.1 However, this approach could be problem-

atic because parametric specifications often impose strong restrictions on the shape of the demand

curve, which can influence the implications of supply and demand analysis.

To address this concern, this paper proposes a semiparametric framework for discrete choice

demand that flexibly accommodates income effects. We demonstrate that a flexible specification

for the income effect is crucial for accurately estimating the curvature of the demand function.

Applying the proposed framework to data from the Japanese automobile industry, we conduct

merger simulations and pass-through analysis for a feebate policy (i.e., a subsidy for eco-friendly

cars). These simulations highlight the practical value of our demand framework in policy-relevant

applications.

Following prior research, such as McFadden (1974), Berry (1994), and Berry et al. (1995)

(henceforth referred to as BLP), we employ a random utility framework to model the demand for

differentiated products. However, our approach distinguishes itself from prior research by incorpo-

rating income effects in a nonparametric manner. Previous studies have often used a quasi-linear

specification of random utility without considering income effects, or incorporating them based on

1Consider a log-log specification for the demand system with J products. The number of parameters required to
estimate the own- and cross-price elasticity matrices is on the order of J2. Consequently, to alleviate the estimation
burden, researchers must impose constraints on the demand system. Further details can be found in Berry (1994).
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parametric assumptions. We demonstrate that allowing for greater flexibility in the functional form

of the income effect term is critical for accurately estimating demand curvature and price elasticity

patterns. Furthermore, our framework permits the estimation of welfare changes in the presence of

income effects (McFadden 1999; Dagsvik and Karlström 2005).

Our demand model employs a semiparametric framework that includes both a parametric com-

ponent for utility derived from product characteristics and a nonparametric function to capture the

income effect. To estimate this model, we combine a method of sieve approximation from the semi-

parametric econometrics literature (Chen, 2007) and the nested fixed point algorithm proposed by

BLP. We first approximate the nonparametric function of the income effect using a sieve, that is, a

linear combination of known basis functions. We select Bernstein polynomials as the basis function

due to their shape-preserving properties (explained in greater detail below). After implementing

the sieve approximation, our model closely aligns with the standard parametric framework of BLP.

We then use a nested fixed point algorithm to implement sieve GMM estimation.

A novel aspect of our estimation method is the exploitation of a shape restriction on the non-

parametric function representing the income effect. Non- and semiparametric estimation methods

are associated with the imprecision of estimators as a cost of flexibility. This issue becomes particu-

larly critical in the presence of endogeneity, a major challenge encountered in demand estimation.2

To mitigate this problem, recent econometrics literature has suggested that researchers should em-

ploy shape restrictions in such estimations.3 As demonstrated in Section 2.1, the income effect

term is assumed to be weakly increasing, a presumption based on the utility maximization behav-

ior of consumers. We integrate this monotonicity constraint into our semiparametric estimation

approach. Monte Carlo experiments, detailed in Section 4, illustrate that incorporating a shape re-

striction significantly reduces the variance of the estimated nonparametric function in our demand

model.4

We apply our semiparametric framework to the Japanese automobile market. Our data include

product- and market-level information on sales, prices, and characteristics from 2006 to 2013. Our

2In a semiparametric setting, endogeneity results in an ill-posed inverse problem, leading to imprecise estimation
of the nonparametric components. For further details, see Horowitz (2014).

3Chetverikov and Wilhelm (2017) demonstrate that imposing a shape restriction can improve estimation perfor-
mance in the context of a nonparametric instrumental variable model.

4Prior studies, such as Blundell et al. 2017 and Chetverikov and Wilhelm 2017, have demonstrated that imposing
shape restrictions can enhance estimation performance in non- or semiparametric models that are linearly separable
in the error term. Our simulation analysis suggests that this insight is also applicable to non-separable models.
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estimation results reveal significant nonlinearity in the shape of the income effect. We then use

the estimated model to conduct two counterfactual simulations: a pass-through analysis and a

merger simulation, where the curvature of demand plays a crucial role. We compare the simulation

results obtained from our demand model with those derived from parametric logit models with and

without consumer heterogeneity.

In our first counterfactual analysis, we evaluate the effects of the Japanese government’s sub-

sidy for eco-friendly cars introduced in 2009. This evaluation involves a pass-through analysis

specifically focused on a subsidy. Theoretically, Weyl and Fabinger (2013) demonstrated that the

curvature of demand determines the degree of pass-through to final prices. Our semiparametric

model predicts much higher pass-through rates compared to a quasi-linear logit model (without

consumer heterogeneity), which imposes a priori restrictions on the pass-through rate. Compared

to a parametric random coefficient logit model, the semiparametric model shows more significant

heterogeneity in the pass-through rates across products.

In our second counterfactual analysis, we conduct a merger simulation using our demand model.

The merger simulation is one of the most policy-relevant applications of demand estimation, and

thus is suited to demonstrating the value of our semiparametric model. As discussed in Farrell

and Shapiro (2010), the price effects of a merger can be considered as, in the first order, the pass-

through of the increase in the opportunity costs, known as the upward pricing pressure (UPP).

We find that our semiparametric model predicts the largest price effects of a merger among three

demand specifications. This result is driven by both the pass-through rate and the UPP implied

from our semiparametric model.

The remainder of this paper is organized as follows. First, we review the related literature

to clarify the intended contributions of our work. In Section 2, we introduce a demand model

for differentiated products incorporating a nonparametric specification for income effect. Section

3 discusses the estimation method using aggregate (market-level) data. In Section 4, we conduct

Monte Carlo experiments to evaluate our framework’s performance. The framework is subsequently

applied to data from the Japanese automobile market, with the demand model estimated in Section

5. Using this estimated model, two counterfactual simulations involving pass-through and merger

analyses are presented in Section 6. The robustness of our empirical findings is examined in Section

7. Finally, Section 8 provides the conclusions of our study.
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Related Literature This paper contributes to three distinct strands of literature. Firstly, it

relates to the literature on non- and semiparametric estimation of consumer demand models. While

many previous works (e.g., Blundell et al. 2012, 2017) have focused on the demand for homogenous

goods, more recent studies have instead explored the demand for differentiated products within

the discrete choice framework (e.g., Bhattacharya 2015; Tebaldi et al. 2019). These studies have

primarily investigated nonparametric identification, and estimated demand and welfare based on

individual-level data. In contrast, our work addresses scenarios where only aggregate data, such

as market-level data, are available. This approach aligns with that taken by BLP and subsequent

studies.

Griffith et al. (2018) represents the study most closely related to ours. Their demand model

integrates a flexible and parametric form of the income effect within a discrete-choice framework.

Using this model, the authors estimated the demand for margarine in the UK and evaluated the

impact of a tax on saturated fat content. Our paper complements the work of Griffith et al.

(2018) in both methodology and application. Methodologically, we estimate the income effect term

nonparametrically with shape restrictions through a sieve approximation, demonstrating that shape

restrictions can significantly enhance the precision of estimating the income effect. Furthermore,

our analysis focuses on scenarios where only aggregate data (i.e., market-level data) are available,

thus contrasting with the individual-level choice data used by Griffith et al. (2018).5 Additionally,

we address price endogeneity through the use of instrumental variables (IVs). Our application

investigates automobile demand, highlighting the pivotal role of the income effect in purchasing

decisions. We further explore the implications of a flexible income effect in both pass-through

analysis and merger simulation.

Other papers related to our work include Compiani (2021), Wang (2022), Birchall et al. (2023),

and Miravete et al. (2023). The former two papers considered a non- and semiparametric modelling

of consumer demand. Compiani (2021) introduced a fully nonparametric estimation approach for

differentiated product demand models. While accommodating a broad range of demand models,

Compiani (2021)’s method uncovered challenges concerning its direct application to scenarios with a

large number of products.6 Our framework addresses such scenarios by targeting a one-dimensional

5Herriges and Kling (1999) and Morey et al. (2003) also incorporated the nonlinear income effect in a parametric
manner to estimate discrete choice models using individual-level data.

6Berry and Haile (2014) and Compiani (2021) focused on the identification and estimation of the inverse of mean
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nonparametric object that captures the income effect. In comparison, Wang (2022) presented a

semiparametric model for differentiated products within a BLP framework, estimating the distri-

bution of random coefficients nonparametrically. Our work diverges by relaxing the functional form

assumption on the income effect and estimating it nonparametrically.

The latter two papers considered a parametric modelling for flexible estimation of consumer

demand. Birchall et al. (2023), building upon Björnerstedt and Verboven (2016), employed a

Box-Cox specification in the discrete choice model to relax the unit demand assumption, thereby

enabling a flexible estimation of demand curvature. They applied this framework to estimating the

demand for ready-to-eat cereals. Our methodology complements Birchall et al. (2023) by offering

a flexible specification for cases of unit demand, suitable for such durable goods as appliances and

automobiles. Lastly, a recent paper by Miravete et al. (2023) considered a unit-demand case and

adopted a first-order approximation of the Box-Cox transformation for the income effect function.

Our model shows greater flexibility by adopting a non-parametric specification for the income effect

function. Our framework also explicitly considers the budget constraint and utility maximization,

thus allowing for the welfare analysis.

Secondly, our paper contributes to the empirical literature on pass-through effects, as illus-

trated by such studies as Nakamura and Zerom (2010), Goldberg and Hellerstein (2013), Fabra and

Reguant (2014), and Hollenbeck and Uetake (2021). We enrich this body of work by highlighting

the significance of flexibly estimating demand curvature in assessing the pass-through of taxes and

subsidies via supply-side simulations. Our empirical results resonate with the theoretical insights of

Weyl and Fabinger (2013), which underscored the critical role of demand curvature in determining

the pass-through rate. Unlike the simple logit model, which is constrained by the limitation that

the pass-through rate cannot exceed unity, our demand model accommodates pass-through rates

that can exceed one.

Thirdly, our paper enriches the extensive literature on the empirical analysis of horizontal

mergers. Since the seminal work of Nevo (2000a), numerous empirical studies have employed

simulation analyses in differentiated product markets to assess merger effects on prices and social

welfare.7 Accurate estimation of the demand model is pivotal for precisely forecasting the price

utility, modeled as a function of vectors of prices and market share, resulting in a 2J dimensional function, where J
represents the number of products.

7For example, see Peters (2006) on airline, Fan (2013) on newspaper, Houde (2012) gas station, Gowrisankaran et
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effects of a merger, as oligopolistic firms base their pricing strategies on the underlying demand

structure. Although the logit model and its variant, the random coefficient logit model, have been

frequently used in these analyses, their inherent restrictive curvature properties may inaccurately

influence the simulation of merger effects (see, e.g., Crooke et al. 1999). Addressing this limitation,

our work illustrates how our demand model’s flexible estimation of demand curvature provides a

robust alternative for antitrust analyses.

2 Demand Model

2.1 Utility Maximization Problem

This section introduces a model for differentiated product demand that incorporates a nonparamet-

ric income effect. We begin with a utility maximization problem that includes both continuous and

discrete choices, following McFadden (1981). Consumers face a discrete choice among differentiated

goods and a continuous choice concerning the consumption of all others. As we later assume, this

continuous choice problem can be conceptualized as the consumption of a numeraire.

Let U(m, j) denote the direct utility function, where m is a dm-dimensional vector representing

the consumption of continuous choice goods. The index j ∈ J ≡ {0, 1, . . . , J} corresponds to an

alternative in the discrete choice decision, with J products available in the market. Specifically,

the index j = 0 indicates that the consumer opts not to purchase any of the discrete choice goods,

a choice referred to as the outside goods.

The utility maximization problem is given by the following:

max
(m,j)∈Rdm+ ×J

U(m, j) (2.1)

s.t. Pm
′m + pj ≤ yi,

where Pm is a dm dimensional vector of prices of continuous choice goods, pj is the price of

alternative j, and yi is income.

Conditional on choice j in the discrete choice, we define the conditional indirect utility function

al. (2015) hospital, Miller and Weinberg (2017) beer, Ohashi and Toyama (2017) automobile, and Björnerstedt and
Verboven (2016) on pharmaceutical mergers.
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as follows:

V (Pm, y − pj , j) ≡ max
m∈Rdm+

U(m, j) s.t. Pm
′m ≤ yi − pj . (2.2)

Note that we define p0 = 0 as choosing the outside good incurs no costs.

The right-hand side of Equation (2.2) represents a standard utility maximization problem.

Hence, the conditional indirect utility function V (Pm, y − pj , j) exhibits the following standard

properties: (1) homogeneous of degree 0 regarding both Pm and (y−pj), (2) increasing in (y−pj),

(3) non-decreasing in Pm, and (4) quasi-convex in both (yi − pj) and Pm. We employ some of

these properties for deriving shape restrictions for estimation.

To derive a specification of the conditional indirect utility function suitable for estimation, we

introduce the following assumption about the direct utility function:

U(m, j) = v(j) + u(m). (2.3)

This assumption suggests that the utility derived from differentiated goods is independent from

that of all other goods. Although this may initially appear as restrictive, most discrete-choice

demand models implicitly rely on this assumption.8

The conditional indirect utility function can now be expressed as:

V (Pm, y − pj , j) = v(j) + Ṽ (Pm, y − pj). (2.4)

The function Ṽ (Pm, y−pj) satisfies the four properties implied by the utility maximization problem.

In practice, however, the prices of all other goods, denoted as Pm, are not always observable. To

deal with this issue, we assume that the continuous good is a numeraire, with its price represented by

Pm. This price is thus treated as a price index. Consequently, we obtain Ṽ (Pm, y−pj) = u
Ä
y−pj
Pm

ä
,

implying that the utility from a numeraire depends on the disposal income y − pj after choosing

alternative j. Hereafter, both income y and the price of discrete choice goods pj are deflated by

the price index Pm.

8This approach excludes the discrete-continuous choice model described by Dubin and McFadden (1984), where
the choice of an appliance (i.e., a discrete decision) influences the utility derived from electricity consumption (i.e., a
continuous decision). Newey (2007) explored the nonparametric identification of a discrete-continuous choice model
when individual choice data are available. Extending our framework to accommodate such scenarios presents a
promising avenue for future research.
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We now define the income effect term by f(y − pj) ≡ Ṽ (Pm, y − pj), albeit with a slight abuse

of notation. The function f(y − pj) plays a pivotal role in our empirical framework. Importantly,

the income effect term f(y − pj) is a weakly-increasing function, imposed in the estimation.

2.2 Conditional Indirect Utility Function

Turning to the utility generated by consuming a discrete choice good v(j) in Equation (2.3), we

follow the standard specification found in the literature. We introduce an index i, representing a

consumer, and denote the utility from a discrete choice good j as vij .

vij = β′Xj + ξj + εij for j = 1, . . . , J (2.5)

vi0 = εi0 (2.6)

Xj is a vector of observable characteristics of product j, and ξj represents its unobservable char-

acteristics. εij is an independent and identically distributed (IID) idiosyncratic shock that follows

the type I extreme-value distribution.

We now present the conditional indirect utility function of consumer i when choosing j:

Vij =


f(yi − pj) + β′Xj + ξj + εij for j = 1, · · · , J

f(yi) + εi0 for j = 0

. (2.7)

The specification for the indirect utility function follows standard conventions, with the exception of

the income-effect term f(y−p). While we refrain from imposing any parametric functional form on

this function, we assume that it is a weakly increasing function, as implied by utility maximization

in Equation (2.2).

Our specifications can now be compared with those in previous studies. A major and commonly-

seen specification is the quasi-linear form, exemplified by Vij = α(yi − pj) + β′Xj + ξj + εij . In

this model, the demand function is independent of the income level yi because the income term is

canceled out when comparing two alternatives.9 BLP introduces Vij = α ln(yi−pj)+β′Xj+ξj+εij ,

9Another prevalent specification is Vij = αi(yi − pj) + β′Xj + ξj + εij , αi = g(zi), where zi represents consumer
i’s characteristics, such as income, age, and household size. See Nevo (2001).
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incorporating a parametric form for the income effect.10 Unlike these models, our approach refrains

from imposing any parametric assumption on f(·), other than it being an increasing function. We

discuss the benefits of such a flexible specification in Section 2.4, exploring its implications across

various contexts in the industrial organization literature and applied microeconomics.

2.3 Individual Choice Probability and Market Share

This subsection considers the discrete choice decision based on the conditional indirect utility

function obtained above. We then derive the market share equation, which provides the basis for

later estimation. Hereafter, we add the index t denoting the market, which is defined by geography,

time, or both. The conditional indirect utility function is now denoted by Vijt.

When considering the discrete choice decision, we need to incorporate the budget constraint in

the original utility maximization problem (2.1). The budget constraint implies that consumer i with

income yit cannot buy goods whose price pjt is higher than their income. Prior studies have mostly

ignored this budget constraint, possibly due to its having no impact under the common utility

specification, such as a quasi-linear form. Recent papers (e.g., Xiao et al. 2017; Pesendorfer et al.

2023) have discussed the bias associated with the omitted variable constraint. The budget constraint

implies that each consumer i has a different choice set according to their income. Specifically, we

define the choice set of consumers i as:

Jit = {0} ∪ {j ∈ {1, · · · , Jt} : yit − pjt ≥ 0} , (2.8)

where Jt is the total number of products available in market t.

Given the conditional indirect utility Vijt, a consumer i chooses the alternative that provides

the highest utility from the choice set Jit. The discrete choice problem is given as follows:

max
j∈Jit

Vijt. (2.9)

10Practically, the term α log(yi − pj) can be approximated by α
yi
pj as a first-order Taylor expansion, according to

Berry et al. (1999).
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The choice probability for consumer i selecting alternative j is derived as

sijt(yit) =
1{yit ≥ pjt} · exp (f(yit − pjt) + β′Xjt + ξjt)

exp(f(yit)) +
∑Jt

k=1 1{yit ≥ pkt} · exp (f(yit − pkt) + β′Xkt + ξjt)
. (2.10)

Note that the indicator function 1{yit ≥ pjt} accounts for the budget constraint.

The market share of each product sjt is now derived by aggregating the individual choice

probability across consumers. In the current specification, consumer heterogeneity comes from

individual income yit.
11 Let yit follow the distribution of income Gt(yit). The market share is given

by

sjt =

∫
sijt(yit)dGt(yit).

Market demand qjt is calculated by multiplying the market share sjt by the market size Nt, that

is, qjt = Nt × sjt.

2.4 Model Implications

This subsection addresses the practical significance of the flexible income effect. We first illustrate

its impact on price elasticity, before examining how the shape of the demand function is related to

the pass-through analysis and merger simulations.

Price Elasticity To underscore the innovation of our demand specification, we begin by exam-

ining the price elasticity in a multinomial logit model characterized by quasi-linear utility without

consumer heterogeneity (i.e., f(y − p) = α(y − p) where α > 0 is a scalar parameter). Omitting

index t for notational simplicity, the own- and cross-price elasticity ηjk is given as follows:

ηjk =
∂qj
∂pk

pk
qj

=


−αpj(1− sj) if k = j

αpksk if k 6= j

(2.11)

Price elasticity under the quasi-linear specification has been shown to be relatively restrictive, as

highlighted by Nevo (2000b). More specifically, the absolute value of the own-price elasticity, |ηjj |,
11The model can also incorporate random coefficients on product characteristics, e.g., uijt = f(yit− pjt) +β′iXjt +

ξjt + εijt, where βi ∼ N(β̄,Σ). This specification allows for a richer substitution pattern across products. See Section
3.2 for details.
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grows with its own price pj , implying that more luxurious goods exhibit higher own-price elasticity.

In our demand specification, the price elasticity is given as follows:

ηjk =
∂qj
∂pk

pk
qj

=


−pj
sj

∫
f ′(yi − pj)sij(1− sij)dG(yi) if k = j

pk
sj

∫
f ′(yi − pk)sijsikdG(yi) if k 6= j

(2.12)

Price elasticity is now influenced by the income effect term f(y− p). More precisely, the curvature

of the demand curve, as indicated by its second-order derivative, is determined by the shape of

f(y − p), which can be flexibly estimated using a nonparametric approach. Consequently, our

methodology avoids imposing any predetermined restrictions on how own-price elasticity varies

with price.

It is worth discussing how our approach relates to the random coefficient logit model, which is

commonly used in practice. Nevo (2000b) observed that, by introducing heterogeneity in consumers’

price sensitivity (i.e., marginal utility from income), it is possible to flexibly estimate price elasticity,

even when prices are linearly incorporated into the utility function. This means that, if consumers

purchasing less expensive products are highly sensitive to price changes, the own-price elasticity for

these products could be significant. Therefore, incorporating a random coefficient can effectively

address common issues related to both cross- and own-price elasticity. In our demand model, price

sensitivity, denoted by f ′(yi−pj), varies among consumers based on their income levels. Moreover,

in our model, price sensitivity f ′(yi− pj) also varies with the price level itself, providing additional

flexibility in estimating own-price elasticity.12

Pass-Through Analysis The pass-through analysis evaluates the extent to which prices adjust

in response to changes in production costs or taxes (subsidies). The role of demand curvature

as a determinant of the pass-through rate has been emphasized in some theoretical studies. Most

notably, Weyl and Fabinger (2013) demonstrated that, in symmetric oligopoly or monopoly markets,

the pass-through rate is less than one if and only if the demand curve is log-concave, that is

d2 log q(p)
dp2

< 0. The demand curve becomes log-concave in a multinomial logit model with a quasi-

12While our discussion primarily focuses on own-price elasticity, it is worth noting that the income effect term
f(y−p) also influences cross-price elasticity. This term introduces consumer heterogeneity in terms of price sensitivity
into the demand model, where price-sensitive customers are more inclined to purchase cheaper products. Such
heterogeneity fosters distinct substitution patterns according to the product’s price.
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linear specification.

However, even without adopting a quasi-linear specification, imposing a functional form on the

income effect can inherently restrict the demand curvature and, consequently, the pass-through

rate. This limitation underscores the significance of our flexible demand framework for analyzing

the impact of cost shocks and tax policy on pass-through rates.13 In our empirical application

in Section 5 and 6, we illustrate the significance of the flexible income effect by analyzing the

pass-through of a subsidy on eco-friendly cars.

Merger Analysis Merger analysis holds critical importance for antitrust practice, primarily

aiming to predict the potential price increases resulting from the merger of two competing firms.

One method involves calculating UPP, determined by the diversion ratio of competing products

and their markup, as discussed by Farrell and Shapiro (2010) and Jaffe and Weyl (2013). This

calculation provides an indication of the merger’s possible impact on prices. A more detailed

method is merger simulation, where a demand and supply model of the market is constructed and

estimated. This approach involves performing a counterfactual simulation to determine the market

equilibrium when the merging firms jointly maximize profits.

The shape of the demand function is crucial for estimating the merger effect in both approaches.

In the approach proposed by Farrell and Shapiro (2010) and Jaffe and Weyl (2013), the impact

of a merger is essentially viewed as a form of cost pass-through in the first order. This is because

the merged entity considers the opportunity cost associated with the profit loss from its partner.14

The price effect of the merger hinges on the pass-through of this increased opportunity cost into

the final price. Therefore, the relevance of demand curvature in pass-through analysis is equally

applicable here. Furthermore, in merger simulations, Crooke et al. (1999) showed that consumer

demand with identical elasticities, but differing curvatures, can result in vastly different simulated

merger outcomes.

13Griffith et al. (2018) offered in-depth discussions on the critical role of flexible income effect specifications in
pass-through analysis.

14Consider a merger between two single-product firms. After the merger, the new first-order condition for Firm 1’s

pricing is p1 +
Ä
∂q1
∂p1

ä−1
q1 = c1 +

Ä
− ∂q2
∂q1

ä−1
(p2 − c2). Here, the left-hand side represents the marginal revenue from

Firm 1’s product, while the second term on the right-hand side accounts for the profit loss of Firm 2’s product due
to diversion from Firm 2 to 1, regarded as the opportunity cost for Firm 1 to increase its output. See Section 6.3 for
details.
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3 Estimation Method

This section presents the estimation method for our semiparametric model, which includes the

nonparametric function f(y − p) and the linear parameter β in the utility function. To estimate

these model components, we employ a sieve approximation for the nonparametric function and

incorporate it into the nested fixed-point (NFP) algorithm, as proposed by BLP. Additionally, we

apply a shape restriction to the nonparametric component with the aim of enhancing the precision

of the parameter estimation.

3.1 Sieve Approximation with Shape Restriction

We first introduce the sieve approximation method as proposed by Chen (2007) and Blundell

et al. (2007). This method involves approximating a nonparametric function through a linear

combination of known basis functions. Among various candidates for these functions, we opt for the

Bernstein polynomial due to its convenience in incorporating shape restrictions. More specifically,

we approximate the function f(·) by the K-th order Bernstein polynomial BK(x):

f(x) ≈ BK(x) =
K∑
k=0

πkb
K
k (x) ≡ ψK(x)′Π (3.1)

where

bKk (x) =

Ö
K

k

è
xk(1− x)K−k, (3.2)

ψK(x) =
(
bK0 (x), bK1 (x), . . . , bKK(x)

)′
, and Π = (π0, π1, . . . , πK)′. The nonparametric function f(·)

is now approximated by a linear function of the basis function ψK(x) and coefficients Π. Note that

the range of x is normalized to [0, 1]. 15

One advantage of selecting the Bernstein polynomial as a basis function is the ease of incor-

porating shape restrictions into the nonparametric function. As highlighted in Section 2.1, the

nonparametric income-effect term f(y − p) is weakly increasing. To incorporate this shape re-

striction within our estimation, we impose constraints on the coefficients Π. With the Bernstein

15We standardize the variable yit − pjt that appears in the function f(·) as follows. Given the price data
{pjt}j∈{1,··· ,Jt},t∈{1,··· ,T} and the simulated draws of income {yit}i∈{1,··· ,ns},t∈{1,··· ,T}, we define zmax = maxi,j,t{yit−
pjt} and zmin = mini,j,t{yit−pjt|yit−pjt > 0}. Once done, we define the standardized variable by zijt ≡ yit−pjt

zmax−zmin
,

so that the variable zijt ranges in [0, 1] if yit − pjt is positive.
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polynomial approximation, the derivative of the function is expressed as:

B′K(x) = K
K−1∑
k=0

(πk+1 − πk) bK−1k (x)

Thus, the monotonicity restriction (i.e., B′K(x) ≥ 0) can be imposed by πk ≤ πk+1 for all k.16

Lastly, we need to normalize the function by setting π0 = 0, so that we have f(0) = 0. This

normalization is needed because we cannot identify the level of the income effect term f(·). If f(·)

in Equation (2.10) is replaced with f̃(·) = f(·) + C, the constant term C will be canceled out.

3.2 Sieve GMM Estimation with Nested Fixed-Point Algorithm

We incorporate the sieve approximation into the BLP’s NFP algorithm to estimate the model

parameters. With sieve approximation, the model can be written as:

sjt =

∫
1{yit ≥ pjt} · exp

(
ψK(yit − pjt)′Π + β′Xjt + ξjt

)
exp(ψK(yit)′Π) +

∑Jt
k=1 1{yit ≥ pjt} · exp (ψK(yit − pjt)′Π + β′Xkt + ξjt)

dGt(yit). (3.3)

Unobserved product characteristics ξjt represent an econometric error term in the model. The

parameters we estimate are summarized by (β,Π).

As is typical in estimating consumer demand models, our model is subject to an endogeneity

problem. This concern arises from the correlation between the product price pjt and the unobserved

product characteristics ξjt, which is an econometric error term. Although econometricians lack

data on unobserved product characteristics ξjt, oligopolistic firms may have better access to such

information. Consequently, firms may set their product prices by considering product characteristics

that are unobservable for econometricians. Such price setting behavior leads to the endogeneity

problem associated with product prices.

We address this issue by using IVs. We impose the following conditional mean restrictions:

E [ξjt|Zjt] = 0 for all j = 1, 2, ...Jt, and t = 1, 2, ...T, (3.4)

16This restriction of the coefficients is a sufficient, but not necessary, condition for the function f(·) to be weakly
increasing. Alternatively, the shape restriction could be imposed by adding the constraint that the derivative of f(x)
is positive on a grid of points. In Appendix D, we attempt this alternate approach to estimate the demand model
in our automobile application. The estimation results with the point-wise restriction are quite similar to that using
the restriction on the sieve coefficients. However, this alternate approach requires significantly longer computation
times. See Appendix D for details.
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where Zjt is a vector of exogenous variables in the utility function (Xjt) and additional instruments

(Wjt). Additional instruments Wjt are specified in our empirical application at a later point.

In the estimation, we adopt a sieve generalized method of moments (GMM) estimator (Chen

(2007)), which uses the following unconditional moment restrictions:17

E [ξjt(θ)pb(Xjt,Wjt)] = 0, b = 1, . . . , B, (3.5)

where θ ≡ (β,Π) denotes a set of model parameters and {pb(Xjt,Wjt)}b=1,...,B is a sequence of

known functions that can approximate any real-valued square-integrable functions of Xjt and Wjt

as B →∞.

The sieve GMM criterion function is given as follows: 18

ξ(β,Π)′P̃(P̃′P̃)−P̃′ξ(β,Π), (3.6)

where ξ is a vector that stacks unobserved demand shock ξjt for j = 1, · · · , Jt and t = 1, · · · , T .

The matrix P̃ = [P,P⊗X] denotes a matrix of instruments. We follow Chetverikov et al. (2018)

for our choice of matrix P̃. We first consider a linear span of additional instruments Wjt by a

known basis function and denote it as p(Wjt) = (p1(Wjt), · · · , pB(Wjt))
′. The matrix P is then

defined as P = (p(W11), · · · , p(WJT ,T ))′. We also include the tensor product of the columns of two

matrices P and X = (X11, · · · , XJT ,T )′, denoted by P⊗X.

In implementing the estimation method introduced above, we must obtain the econometric error

term ξjt given the parameter (β,Π). Since this term nonlinearly enters the demand function (3.3),

we use the NFP algorithm to calculate ξjt. We define the mean utility as δjt = β′Xjt+ ξjt, which is

the common component of the utility of product j in market t. BLP have shown that there exists

17The sieve GMM estimation is considered to be a sieve minimum distance estimation in which the conditional
expectation is estimated using a series estimator with an identity weighting matrix (see, e.g., Chen (2007)).

18Some of the sieve estimation methods for non- and semiparametric models with endogeneity propose a penaliza-
tion term on the higher derivative of the nonparametric function to alleviate the ill-posed inverse problem (see, e.g.,
Chen (2007)). However, in practice, this penalization term is not necessarily used in implementation, as discussed
in Chetverikov and Wilhelm (2017). Our approach aligns with this practice for several reasons. First, penalization
requires choosing a tuning parameter that governs the strength of penalization. Second, and perhaps more impor-
tantly, our approach incorporates a monotonicity restriction on a nonparametric function, which has a similar effect
to penalization. In their empirical application, Chetverikov and Wilhelm (2017) demonstrated that the penalization
term does not affect the result once a shape restriction has been imposed in the estimation. See Appendix B.3 in
Chetverikov and Wilhelm (2017) for further discussion.
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a unique vector of δt = {δ1,t, · · · , δJt,t}, such that the observed market share {sjt}j=1,··· ,Jt is equal

to the model’s predicted market share. The vector of mean utility δt can be obtained through a

contraction mapping algorithm.

We calculate the value of the objective function given a candidate parameter value of Π as

follows: (1) calculate the vector of mean utility δ by applying a contraction-mapping algorithm;19

(2) run a linear regression of δ on X to obtain β̂ and the residual ξjt; and (3) calculate the value

of the objective function (3.6).

We then run a numerical optimization to minimize the objective function. Note that the pa-

rameter β appearing in the mean utility function can be obtained by employing a linear GMM.20

Thus, we need only run a nonlinear optimization routine over Π. This property circumvents the

computational costs and allows us to incorporate a rich set of covariates and fixed effects in the

mean utility component δjt.

To calculate the confidence interval of the linear parameter β and the nonparametric function

f(y− p), we use a generalized residual bootstrap proposed by Chen and Pouzo (2015) (specifically

Theorem 5.2 of their paper).

Adding Random Coefficients While our baseline specification does not incorporate random

coefficients on product characteristics xjt, adding them to our framework would be both feasible

and straightforward. Specifically, in our estimation method, we can include random coefficient

parameters (i.e., standard deviation of random coefficients) into the set of nonlinear parameters

along with sieve coefficients Π. To estimate these parameters, we need additional moment conditions

to aid identification. Insights from Gandhi and Houde (2019) can be applied, which proposed the

use of differentiation instruments. The differentiation IVs are based on the proximity of products

in terms of product characteristics.

4 Monte Carlo Simulation

Before applying our demand model to real-world data, we conduct Monte Carlo experiments to

assess the efficacy of our methodology. These experiments are designed to demonstrate how well it

19We set the tolerance level of the algorithm at 1E-12 .
20This estimation trick is called ”concentration out.” See, e.g., Nevo (2001).
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can recover the income effect term, denoted by f(y− p), and the linear coefficients, represented by

β in the utility function. Furthermore, we explore the importance of imposing shape restrictions

for accurately estimating the non-parametric component.

We further explore a tradeoff inherent to our flexible approach by contrasting our nonparametric

estimation method against a parametric method, where the income effect function is a linear one

f(y−p) = α(y−p) with parameter α. While our semiparametric approach may be less efficient than

the parametric method if the latter precisely captures the true data-generating process (DGP), it

notably offers robustness against model misspecification due to its nonparametric nature.

4.1 Data Generating Process

We consider a market t where the total number of products is Jt. We set Jt = 100 in our simulations

for all market t and T = 10. We consider the following utility specification:

Vijt =


β0 + β1xjt + ξjt + f(yit − pjt) + εijt for j = 1, · · · , J

f(yit) + εi0t. for j = 0

, (4.1)

where εijt follows an IID type I extreme-value distribution. The observed product characteristic

xjt follows the uniform distribution U(0, 1). The unobserved product characteristic ξjt is assumed

to follow the normal distribution with mean 0 and standard deviation 0.1 (i.e., ξjt ∼ N(0, 0.12).

The product price pjt is given by:

pjt = 0.2 + 0.3xjt + wjt + ξjt, (4.2)

where we include the term ξjt in the product price to consider the correlation between the price

and the unobservable product characteristics.21 We add the cost shifter wjt following the uniform

distribution U(0, 1), which serves as an instrument for the product price.

The market share of each product sjt is given by Equation (2.3). To compute sjt in the

simulation, we use a numerical integration with a quasi-randomly drawn 1,000 units from the

Halton sequence. The income is drawn from the log-normal distribution, i.e., yjt ∼ LN(0, 0.252).

21For simplicity, We assume that the price is competitively determined by the marginal costs in our DGP. We do
not incorporate Bertrand competition into the supply side in our Monte Carlo experiments.
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Under the DGP, the variable y − p has the support of approximately from −1.5 to 2.5.

The model primitives we estimate are β0, β1, and f(y − p). We set β0 = −5 and β1 = 3, and

consider the three different specifications for the income effect term f(·) as follows:

DGP 1 f(a) = sinh−1 (a)

DGP 2 f(a) = ln(2) + ln(|a− 1|+ 1)sgn(a− 1)

DGP 3 f(a) = a

Note that DGP2 exhibits less smoothness compared to the other two functions because it is

not differentiable at a = 1. Furthermore, this function demonstrates convexity when a ∈ [0, 1]

and concavity for a ≥ 1. Consequently, after standardizing positive y − p within the range of

[0, 1], the second-order derivative of the income function changes its sign at approximately the 40th

percentile point. For more details on the standardization process, see Footnote 15. It is also crucial

to recognize that DGP3 represents the scenario where the parametric model precisely captures the

true income function. Thus, in this case, we anticipate that parametric estimation will be more

efficient than our proposed nonparametric approach.

4.2 Implementation

We apply both non- and parametric methodologies to datasets generated by each DGP. To nonpara-

metrically estimate the income effect term f(·), we use the sieve approximation method detailed in

Section 3.1, employing Kth order Bernstein polynomials. We set several values of K (i.e., K = 3, 4,

and 5) to assess the impact of different orders on our results. For the parametric approach, we

adopt the specification:

f(y − p) = α(y − p),

where α represents the parameter to be estimated. This specification aligns with the one used in

DGP 3.

The cost shifter wjt is used to construct an instrument for the price. More specifically, we set

p(wjt) = (1, wjt, · · · , wK−1jt )′ as the basis function. Thus, each row of the matrix P⊗X comprises

all products of the forms: p(wjt)
′xjt = (xjt, wjtxjt, · · · , wK−1jt xjt) for all j = 1, 2, ...Jt, and t =
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1, 2, ...T. We then apply sieve GMM estimation along with the NFP algorithm.22 In a parametric

method, we set the dimension of the instrumental function to one (i.e., p(wjt) = (1, wjt)).

To measure the estimation precision for the nonparametric income effect term, we compute the

mean integrated squared error (MISE) by MISE = 1
NS

∑NS
r=1

(∫ 1
0

Ä
f(z)− f̂r(z)

ä2
dz
)
, where z is

the standardized value of y − p ranging from 0 to 1 and f̂r(z) = α̂rz for parametric estimation.23

The subscript r denotes the index for a simulation. The total number of simulations NS is set to

100. Regarding the linear parameters (β0, β1), we calculate the mean bias and root mean square

error (RMSE) given by Bias(βj) = 1
NS

∑NS
r=1 β̂

r
j − βj and RMSE(βj) = 1

NS

∑NS
r=1(β̂

r
j − βj)2.

4.3 Simulation Results

Simulation results for DGP1-3 are reported in Table 1, Table 2, and Table 3, respectively. Each

table reports the MISE of the nonparametric function f(y − p) and the bias and RMSE of linear

parameters (β0, β1).

The first observation is that simulations incorporating shape restrictions significantly outper-

form those without such restrictions. Across all DGPs, the MISE of the nonparametric function

f(y−p) is considerably reduced when a shape restriction is applied to the income effect term. Sim-

ilarly, the RMSE of the linear parameters (β0, β1) also shows improvement with shape restriction.

The impact of shape restriction is visually evident in Figures 1, 3, and 5, which display the 95%

confidence intervals (CI) for estimations both with and without shape restrictions. Without shape

restriction, the estimate is imprecise near the support’s endpoint, whereas the confidence band

remains tighter under shape restriction. Our findings align with those of Chetverikov and Wilhelm

(2017), who found significant performance enhancements from applying a monotonicity restriction

in a semiparametric partially linear model with endogeneity. Our simulations further extend their

conclusion to scenarios where the model is non-separable.

We now evaluate the performance of our nonparametric approach against the parametric model,

which assumes f(y−p) = α(y−p). In DGP1, the MISE is significantly lower for the nonparametric

estimation with shape restriction compared to the parametric method. The left panel of Figure 2

illustrates that our nonparametric method accurately estimates the shape of the income effect func-

22We set the tolerance level of the NFP algorithm as 1E-12 and employ the constrained minimization procedure in
the Knitro solver.

23The integral inside the parentheses are computed using Monte Carlo integration.
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tion, whereas the parametric estimation incurs bias from model misspecification. Intriguingly, and

as indicated in Table 2, the MISE for f(y−p) in DGP2 is higher using the nonparametric approach

than the parametric model. This is because, as demonstrated in Figure 4, the misspecification bias

is minimal, given that the shape of f(y − p) in DGP2 closely resembles a linear function. Further-

more, the 95% CI in the nonparametric method is broader than that in the parametric method,

as depicted in the right panel of Figure 4. Lastly, in DGP3, where the parametric model aligns

correctly with the true data-generating process, the MISE is significantly lower in the parametric

approach than in the nonparametric one.

These results illustrate the inherent tradeoff of our nonparametric approach. On the one hand,

it excels in accurately estimating the shape of the income effect function, even when deviating from

linearity. This capability is particularly valuable in empirical contexts where the precise form of

the income effect function is unknown. However, a common drawback of nonparametric estimation

is the broader CI associated with the estimated function, reflecting the cost of its flexibility.

Table 1: Results of Monte Carlo Simulations under DGP 1

(i) MISE of f(y − p)
Without SR With SR Parametric

K = 3 0.0268 0.0025 0.0099
K = 4 0.0142 0.0050
K = 5 0.1075 0.0069

(ii) Estimation of β0
Without SR With SR Parametric

Bias RMSE Bias RMSE Bias RMSE

K = 3 0.0058 0.1032 -0.0043 0.0249 0.0074 0.0097
K = 4 -0.0072 0.0838 0.0078 0.0405
K = 5 0.0143 0.1557 -0.0024 0.0482

(iii) Estimation of β1
Without SR With SR Parameric

Bias RMSE Bias RMSE Bias RMSE

K = 3 0.0018 0.0122 0.0002 0.0109 0.0026 0.0107
K = 4 0.0026 0.0123 0.0005 0.0110
K = 5 0.0009 0.0123 0.0000 0.0128

Note: SR is an abbreviation of shape restriction.
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Table 2: Results of Monte Carlo Simulations under DGP 2

(i) MISE of f(y − p)
Without SR With SR Parametric

K = 3 0.0289 0.0039 0.0018
K = 4 0.0192 0.0046
K = 5 0.0526 0.0049

(ii) Estimation of β0
Without SR With SR Parametric

Bias RMSE Bias RMSE Bias RMSE

K = 3 -0.0375 0.1053 -0.0184 0.0315 -0.0253 0.0091
K = 4 -0.0070 0.1033 -0.0219 0.0390
K = 5 0.0238 0.1198 -0.0185 0.0440

(iii) Estimation of β1
Without SR With SR Parameric

Bias RMSE Bias RMSE Bias RMSE

K = 3 -0.0012 0.0114 -0.0009 0.0111 -0.0011 0.0108
K = 4 -0.0009 0.0124 -0.0003 0.0113
K = 5 0.0015 0.0121 -0.0005 0.0123

Note: SR is an abbreviation of shape restriction.

Table 3: Results of Monte Carlo Simulations under DGP 3

(i) MISE of f(y − p)
Without SR With SR Parametric

K = 3 0.0356 0.0044 0.0002
K = 4 0.0207 0.0065
K = 5 0.0615 0.0066

(ii) Estimation of β0
Without SR With SR Parametric

Bias RMSE Bias RMSE Bias RMSE

K = 3 -0.0123 0.1140 0.0038 0.0376 0.0010 0.0105
K = 4 0.0098 0.0981 -0.0050 0.0496
K = 5 0.0085 0.1249 -0.0036 0.0519

(iii)Estimation of β1
Without SR With SR Parameric

Bias RMSE Bias RMSE Bias RMSE

K = 3 0.0010 0.0116 -0.0002 0.0121 -0.0017 0.0114
K = 4 0.0010 0.0107 0.0013 0.0108
K = 5 0.0004 0.0138 0.0006 0.0112

Note: SR is an abbreviation of shape restriction.
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Figure 1: The Role of Shape Restriction under DGP 1
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Figure 3: The Role of Shape Restriction under DGP 2
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Figure 4: Nonparametric and Parametric Estimation under DGP 2
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Figure 5: The Role of Shape Restriction under DGP 3
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Figure 6: Nonparametric and Parametric Estimation under DGP 3
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5 Empirical Application: Automobile Demand

We now apply our semiparametric demand model to the Japanese automobile market to demon-

strate the practical relevance of our framework. In Section 5.1, we briefly explain the data and

institutional background. Preliminary results, estimated using the linear logit model by Berry

(1994), are presented in Section 5.2, where we also discuss the limitations of this approach. To

address these limitations, we introduce the semiparametric specification of the demand model in

Section 5.3. The estimation results of the semiparametric model are discussed in Section 5.4.

Building on these results, we conduct counterfactual simulations detailed in Section 6, evaluating

the implications of a feebate policy for eco-friendly cars in Japan and the potential impact of a

hypothetical merger between two leading manufacturers: Toyota and Honda.

5.1 Data

Two types of datasets are constructed. The first contains information on the Japanese automobile

market between 2006-2013, including product-level information on sales, prices, and product char-

acteristics for each year. Second, we construct the income distribution of Japanese households as

a source of consumer heterogeneity in the demand model (see Appendix B for details).

To construct the former dataset on the Japanese automobile market, we combine the cata-

log information of car models and the registration of newly-purchased cars.24 The dataset is an

unbalanced panel at the model-and-year level.

We define the share of each car model in each year (sjt) as the fraction of the total number

of new car registrations (see Footnote 24) over the total number of households in Japan, sourced

from annual reports of Population, demographics, and the number of households based on the Basic

Resident Register conducted by the Ministry of Internal Affairs and Communications.25 The share

of households not purchasing any automobile is defined as s0t = 1−
∑

j∈Jt sjt, where Jt represents

24The catalog information is obtained from the website CarView!, which provides the specifications of car
models and their list prices. Registrations of standard and compact cars are obtained from the Annual Report
of New Car Registrations (Shinsha Touroku Daisu Nempou) issued by the Japan Automobile Dealers Associa-
tion. Registrations for minicars are obtained from a report published by the Japan Mini Vehicle Association (see
https://www.zenkeijikyo.or.jp/statistics/tushokaku; in Japanese. Accessed on January 6, 2023.). Finally, we
source information on registrations for 20 top-selling imported cars from a report published by the Japan Automobile
Importers Association (see http://www.jaia-jp.org/english-transition/. Accessed on January 6, 2023).

25See https://www.soumu.go.jp/main_sosiki/jichi_gyousei/daityo/jinkou_jinkoudoutai-setaisuu.html

for details (In Japanese. Accessed on January 6, 2023).
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the set of car models available in market t (i.e., year t).

The observable product characteristics (Xjt) include (1) the ratio of horsepower to the weight of

the car (HP/WT), (2) car size (Size), (3) fuel efficiency (miles per gallon [MPG]), and (4) a dummy

variable that indicates whether the model has an automatic/continuously variable transmission

system (AT/CVT).26 We also use dummy variables for mini, foreign, and hybrid cars.27

The data also include the list price pjt offered by manufacturers. We construct an effective price

pejt that reflects the tax and subsidy. The effective price pejt is defined as follows:

pejt = (1 + ρjt)pjt + Tjt − ESjt, (5.1)

where ρjt is the rate of the ad-valorem tax, including consumption tax (5% during the sample

period), Tjt is the specific tax, and ESjt is a subsidy for eco-friendly cars. All prices and taxes are

deflated by the 2015 Consumer Price Index (CPI).

A notable feature of the Japanese automobile market that plays an important role in the analysis

is the presence of various tax and subsidy policies. The Japanese government introduced a feebate

policy named Eco-car Subsidy (ES) program in 2009 as part of the economic stimulus measures in

the wake of the Great Recession. Table 4 provides an overview of the policy.28 The program has two

phases. The first phase of the ES program was effective from April 2009 to September 2010.29 In this

phase, cash rebates of JPY 100, 000 (approximately USD 1,000) and JPY 50, 000 (approximately

USD 500) were offered to normal cars and minicars that exceeded the 2010 fuel efficiency standard

by 15%, respectively.30 The second phase began in December 2011 and continued until January

2013. In the second phase, the eligibility to receive a cash rebate was made stricter than in the

first. JPY 100,000 and JPY 70,000 were subsidized to normal cars and minicars exceeding the 2015

fuel efficiency standard, which is equivalent to 125% of the 2010 standard.

Table 5 presents the descriptive statistics of our dataset. During the sample period, there

was a substantial decrease (approximately 24%) in the total tax burden. The average ES subsidy

26Given that the fuel efficiency is measured in kilometers per liter, we convert it to miles per gallon using mpg =
(fuelefficiency/1.60934)× 3.78541.

27A minicar is a category of automobile with a length of 3.4 meters or less, a width of 1.48 meters or less, and a
height of 2.0 meters or less, as well as a displacement level of 660 cc or less.

28The details of the tax policy are relegated to Appendix C.
29In the first phase, consumers had the option to apply for the ES program with a higher amount of subsidy

conditional on scrapping their existing vehicle if it was older than 13 years. See Kitano (2022) for details.
30We use an exchange rate of 100 JPY/USD throughout the paper.
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Table 4: Details of the Eco-car Subsidy

Phase 1 Phase 2

Period April 2009 to September 2010 December 2011 to January 2013
Subsidy to normal cars JPY 100,000 JPY 100,000
Subsidy to minicars JPY 50,000 JPY 70,000
Requirement exceeding the 2010 fuel efficiency standard by 15% exceeding the 2015 fuel efficiency standard

amounted to JPY 19,000 between 2009 and 2013. In terms of automobile characteristics, we observe

an improvement in the average MPG (fuel efficiency), while no significant changes are detected

in other characteristics. Although a slight increase in effective prices can be noted following the

subsidy’s introduction, this change is primarily attributable to variations in product characteristics.

Table A1 in Appendix A shows a regression analysis of effective prices on the subsidy amount and

taxes, along with product characteristics. This analysis shows that both the subsidy and taxes

influenced prices as anticipated: the former led to lower prices, while the latter resulted in higher

prices.

Table 5: Descriptive Statistics of Japanese Automobile Market Data

(1) 2006-2008 (2) 2009-2013

Mean SD Min Max Mean SD Min Max

log(sjt/s0t) -8.446 1.563 -13.766 -5.347 -8.860 1.782 -15.435 -5.052
pejt (JPY 1 Million) 2.731 1.966 0.780 12.870 2.772 1.973 0.771 13.946

Total Tax (JPY 1 Million) 0.186 0.113 0.030 0.682 0.144 0.120 0.008 0.707
ES (JPY 1 Million) 0.000 0.000 0.000 0.000 0.019 0.039 0.000 0.104
HP/WT 0.099 0.033 0.047 0.276 0.099 0.036 0.045 0.318
MPG 34.595 10.600 12.937 83.501 37.142 11.974 15.524 83.266
Car Size 7.485 0.676 6.115 8.855 7.520 0.673 6.115 8.825
AT/CVT 0.978 0.148 0.000 1.000 0.987 0.115 0.000 1.000
Minicar Dummy 0.202 0.402 0.000 1.000 0.198 0.399 0.000 1.000
Hybrid Car Dummy 0.008 0.090 0.000 1.000 0.042 0.201 0.000 1.000

Observations 495 827

Notes: sjt and s0t represent the market share of product j and outside good in market t . pejt indicates
the effective price that consumers face. “Total Tax” denotes the sum of automobile acquisition tax,
automobile weight tax, and automobile tax. “ES” is an abbreviation of “eco-car subsidy”. All the price
and tax variables are deflated by the 2015 CPI. Product attribute variables include the ratio of horse-
power to car weight (HP/WT), millage per gallon (MPG), car size (Size), dummy variables indicating
whether the model has an automatic or continuously variable transmission (AT/CVT Dummy), and
minicar and hybrid car (minicar and hybrid car dummy).

5.2 Preliminary Results from a Linear Logit Model

As a benchmark, we first estimate the parametric version of the demand model. Specifically, we

estimate the quasi-linear specification given by f(y − p) = α(y − p), where α is a parameter to be
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estimated. Given that the income term y is canceled out, the model is reduced to the linear logit

model of Berry (1994) as follows:31

ln

Å
sjt
s0t

ã
= αpejt + β′Xjt + θf(j) + θt + ξjt, (5.2)

where sjt is the market share of the automobile j at year t, s0t is the market share of outside

option (i.e., not purchasing any car) at year t, pejt is the effective price of the automobile j at year

t, and the vector Xjt includes HP/WT, MPG, car size, AC/CVT dummy, minicar dummy, and

hybrid car dummy. Furthermore, the firm fixed effects (θf(j)) and year (market) fixed effects (θt)

are controlled. ξjt stands for the econometric error term.

We estimate this model using ordinary least squares (OLS) and two-stage least squares (2SLS),

wherein the set of IVs are employed to handle the endogeneity of effective price pejt. We construct

the instruments based on tax and subsidy policy by following Konishi and Zhao (2017) and Kitano

(2022).32 Specifically, our instruments are defined by (1) the sum of the tax amount of other prod-

ucts produced by the firm
∑

k∈Jf ,k 6=j(Tax)kt and (2) the sum of the tax amount of competitors’

products
∑

k/∈Jf (Tax)kt. Note that Taxjt represents the sum of automobile weight tax and auto-

mobile tax of car model j in year t. Importantly, the automobile acquisition tax, which depends

on the automobile price and is thus endogenous, is not included in the variable Taxjt.

We now turn to the validity of our chosen instruments. The relevance of the instruments is

supported by the fact that automobile manufacturers account for the tax rate when setting prices.

We further argue for the relevance based on the first-stage regression in Table 6. Concerning

the independence of the instruments, the tax rate should be uncorrelated with the unobserved

characteristics ξjt. However, a potential challenge arises if automobile manufacturers strategically

respond to changes in the tax rate, possibly by introducing more eco-friendly cars eligible for tax

reductions. This strategic behavior could compromise our instruments’ validity, particularly if firms

anticipate unobserved demand shocks (ξjt) in the timing of product introduction.

31More precisely, we also omit the budget constraint in order to derive Berry (1994)’s linear logit model. Even if
the quasi-linear specification is assumed in our model, the presence of the budget constraint is a source of consumer
heterogeneity. Thus, the budget constraint does not allow us to use a linear regression model, as in Berry (1994).

32We also use differentiation instruments proposed by Gandhi and Houde (2019) to assess its performance. More-
over, we attempted to use traditional BLP instruments for car characteristics, though the first-stage regression of a
parametric IV logit model was substantially weaker than differentiation IV. The result of using traditional BLP IV is
not reported. This finding is consistent with results obtained by Konishi and Zhao (2017) (see Appendix D in their
paper).
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To address this potential issue, we follow Eizenberg (2014). Our key identification assumption

is that firms do not observe the demand shock ξjt prior to product introduction. This assumption

implies that product selection is influenced by observable automobile characteristics rather than

the unobserved demand shock. We can mitigate the above concern by controlling for these observ-

able characteristics that may impact product introduction. In our analysis, car types (e.g., mini,

foreign, and hybrid cars) are related to the eligibility for tax reductions and ESs. Consequently,

our utility function includes dummy variables for these car types in addition to standard product

characteristics.33

Table 6 shows the estimation results of Equation (5.2). Column (1) reports the results of OLS

estimation, where the price is treated as an exogenous attribute. The results of the IV estimation are

then summarized in columns (2)-(4). Estimated coefficients have the expected signs. By comparing

the results of OLS and IV estimation, the price coefficient seems to be underestimated in the former

(i.e., the OLS estimate is biased toward zero). Regarding the validity of the instruments, the result

shown in column (3) suggests that the tax-based instrument has a high value of Kleibergen-Paap

F statistics in the first stage with notably low J statistics. Based on the above results, we use a

tax-based instrument to estimate the semiparametric demand model. We also use column (3) as a

parameter of the linear logit model in the simulation analysis reported in Section 6.

While the estimation of the linear logit model is useful as a preliminary analysis, the model has

several issues in practice. First, as discussed in Section 2.4, the quasi-linear assumption imposes a

strict restriction on the pattern of price elasticity. The relationship between the own-price elasticity

and price is linear under a simple logit model (we revisit this point when estimating the price

elasticity in a semiparametric demand model). In addition, since the demand curve is always log-

concave in price under a simple logit model, the pass-through rate is bounded by 1 (Weyl and

Fabinger 2013). Such property may imply an underestimation of the pass-through rate of the

subsidy.

33While the assumption of exogenous product characteristics may appear strong, it is, in fact, the conventional
approach in the estimation of differentiated product demand. Given our emphasis on demand estimation and its
implications for short-run pricing decisions, we employ this assumption to simplify the analysis. See, e.g., Barwick
et al. (2024) for an analysis that considers endogenous product attributes.
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Table 6: Estimation Results of Linear Logit Model

(1) (2) (3) (4)

OLS IV IV IV

Effective Price (pejt) -0.402 -0.646 -0.929 -0.703

(0.030) (0.119) (0.153) (0.105)
HP/WT 5.898 13.598 22.550 15.424

(1.578) (3.830) (4.853) (3.429)
MPG 0.105 0.100 0.093 0.098

(0.006) (0.007) (0.007) (0.007)
Car Size 1.686 1.976 2.314 2.045

(0.115) (0.163) (0.189) (0.148)
AT/CVT 0.257 0.437 0.647 0.480

(0.385) (0.385) (0.399) (0.385)

Differentiation IV on car attribute No Yes No Yes
Tax-based IV No No Yes Yes

Kleibergen–Paap F statistics NA 21.650 18.290 16.316
Hansen J statistics NA 25.702 2.614 30.986
Observations 1,322 1,322 1,322 1,322

Notes: All regression includes year fixed effects, firm fixed effects, minicar dummy
and hybrid car dummy. The robust standard error is reported in parentheses.

5.3 Semiparametric Demand Specification

We now take the semiparametric approach introduced in Section 2 to overcome the potential issues

of the simple logit model. The following specification is considered for the conditional indirect

utility:

Vijt = f(yit − pejt) + β′Xjt + θf(j) + θt + ξjt + εijt, (∀j ∈ {1, · · · , Jt}) (5.3)

Vi0t = f(yit) + εi0t (5.4)

where f(·) is a weakly-increasing continuous function, yit stands for the real income for individual i

at year t, and εijt is idiosyncratic shock following Type-I extreme value distribution. The definition

of all the other components is the same as in Equation (5.2). We employ the tax-based IV defined

in the previous section (i.e., w1,kt ≡
∑

k∈Jf ,k 6=j(Tax)kt, and w2,kt ≡
∑

k/∈Jf (Tax)kt) to estimate

f(·) and β in the model. Specifically, the matrix of IVs defined in equation (3.6) is based on

p(w) = (1, w1,kt, w2,kt, w
2
1,kt, w

2
2,kt, w

3
1,kt, w

3
2,kt), and the tensor products of p(w) and Xjt.
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The income effect term f(y − p) is approximated by the following specification:

f(y − p) =
−1∑K

k=1 πkb
K
k (y − p)

,

where bKk (x) is a Bernstein polynomial defined in (3.2). We set K = 4 in estimation.34 Regarding

the shape restriction, we impose the monotonicity restriction on a Bernstein polynomial by πk ≤

πk+1 for k = 1, · · · ,K − 1, so that the income effect term f(y − p) is a weakly-increasing function.

The approximation uses the inverse of a Bernstein polynomial, which differs from the regular

Bernstein polynomial used in Monte Carlo simulations. This approach ensures that limx→0 f(x) =

−∞, a restriction that, although seemingly unnecessary, is essential for maintaining the continuity

of the demand model in relation to prices. Such continuity is pivotal for accurately simulating a

pricing equilibrium in numerical analyses. We elaborate on the rationale behind this choice below.

Recall that the individual choice probability sijt(·), defined in Equation (2.10). Due to the

budget constraint in the utility maximization problem (i.e., 1 {pjt ≤ yit}), this choice probability

can be discontinuous in terms of the price at pjt = yit. Specifically, the choice probability sijt is

positive as long as pjt < yit, but becomes zero (sijt = 0) when pjt > yit. Given that we approximate

aggregate demand by simulating a finite number of consumers, the aggregate demand function has

a range of discontinuous points. While such discontinuity is not detrimental to estimation where

prices are fixed as a covariate, it makes the supply-side analysis (i.e., solving the Bertrand pricing

equilibrium) numerically challenging.

This issue can be avoided by imposing a restriction whereby limp→y f(y − p) = −∞. Under

this restriction, the individual choice probability sijt(·) converges to zero as the price approaches

the income level. This property ensures the continuity of the demand function. In Appendix E, we

graphically demonstrate this point using a numerical example.

The aggregate demand is determined by integrating the individual choice probability with in-

come distribution. We assume the income distribution to be the log-normal distribution with mean

34Figure A1 in Appendix A reports the results of a robustness analysis concerning the choice of K. The results
indicate that the estimated own-price elasticities remain similar across the choice of K = 3, 4, and 5. Although a
data-driven method for determining K would be preferable, current theoretical guidance on selecting the order of
sieve polynomials (K in our context) for general nonparametric models with endogeneity is limited, as noted by Chen
and Qiu (2016). Chen et al. (2023) recently introduced a data-driven approach to determine the sieve dimension,
considering models with conditional moment restrictions of the form E[Y −h0(X)|W ] = 0, where Y is the dependent
variable, X is an endogenous variable, W is a set of instruments, and h0(·) is the nonparametric function to be
estimated. However, our model falls outside the scope of the models addressed in their analysis.
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µt and standard deviation σt: LN(µt, σ
2
t ). We estimate these two parameters (µt, σt) for each year

using data from the Comprehensive Survey of Living Conditions. See Appendix B for the details.

To numerically compute the integral, we use quasi-random sampling. We draw 1,000 consumers

from the estimated distribution by a Halton sequence.

5.4 Estimation Results of Semiparametric Model

Figure 7 and Table 7 report estimates of the income-effect term f(y − p) and linear parameters

β, respectively. Figure 7 shows that the income effect term f(yit − pjt) is nonlinear and concave.

The marginal utility from the disposable income after purchasing an automobile is higher for low-

income households. Table 7 reports the estimation results of linear parameters in Equation (5.3).

The point estimates are comparable with the simple logit model, except for the HP/WT, for which

the coefficient is approximately 1.5 times larger when we employ the semiparametric estimation

(see column (3) of Table 6). However, the CIs of linear parameters in the semiparametric models

are broader than those in the linear logit model. This result suggests that flexible estimation of

the income effect affects the precision of other parameter estimates, demonstrating a trade-off that

must be considered when choosing the estimation method.

Figure 7: Estimation of f(yit − pjt)

(i) f(y − p) is plotted. (ii) − log10(−f(y − p)) is plotted.

Note: The figure the reports point estimate and 95% confidence band based on 200 times bootstrap sampling. The

range of y − p plotted is JPY 0.5 to 10 Million.

Based on the estimated demand function, we calculate the own-price elasticity. Figure 8 plots
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Table 7: Estimation of Linear Parameters

Estimate 95% CI

Constant -25.147 [ -27.587, -21.078]
HP/WT 21.315 [ 10.744, 33.838]
MPG 0.077 [ 0.042, 0.098]
Car Size 2.508 [ 1.877, 3.324]
AT/CVT 0.269 [ -0.676, 1.531]

Observations 1,322

Note: The point estimate of selected linear parameters
and 95% confidence interval are reported. The confi-
dence interval is constructed using 200 bootstrap sam-
ples. See Theorem 5.2 of Chen and Pouzo (2015) for
the details. Minicar dummy, hybrid car dummy, year
fixed effects, and firm fixed effects are also included but
not reported.

the estimated own-price elasticity and the effective price of automobiles for each product. We

compare the own-price elasticity based on our semiparametric model (blue circle) with that from

a simple logit model (black line). As discussed in Section 5.2, the simple logit model implies a

linear relationship between elasticity and price (see Equation (2.11) in Section 2.4). However, our

semiparametric model reveals a nonlinear relationship where the estimated elasticity is relatively

constant in the range of JPY 2 to 10 million. Consequently, the elasticity estimated by simple

logit suffers from underestimation for inexpensive cars (e.g., minicars) and from overestimation for

luxury cars.

Figure 8: Estimated Own-Price Elasticity
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In addition to the linear logit model, we estimate the following parametric specification with

consumer heterogeneity.

Vijt =
α

yi
pejt + β′Xjt + θf(j) + θt + ξjt + εijt, (5.5)

Vi0t = εi0t (5.6)

The price coefficient is inversely proportional to the income level yit, and is thus heterogeneous

across consumers. Note that this specification is the same as Berry et al. (1995) and Berry et al.

(1999), and is considered a first-order approximation of the parametric income effect of f(yit−pjt) =

α log(yit − pjt).35

The estimated price elasticity in a parametric BLP model (red diamond) is also plotted in

Figure 8. The overall pattern departs from the simple logit model and is close to the one from the

semiparametric model. However, given the price level, the estimated own-price elasticity is more

heterogeneous in the semiparametric model than the parametric BLP model.

To further examine the difference across specifications, we plot the relationship between the

own-price elasticity (i.e., the first derivative) and the demand curvature (i.e., the second derivative)

in Figure 9. Following Mrázová and Neary (2017) and Miravete et al. (2023), we calculate the

curvature of demand ρj for product j by

ρj =
qj · ∂

2qj
∂p2jÄ

∂qj
∂pj

ä2 .
Figure 9 shows that the curvature estimates in the linear logit model (green diamond) are bounded

by, and concentrated at, one. On the other hand, the other two models (i.e., parametric income

effect in red square and semiparametric model in blue circle) exhibit the heterogeneity in the cur-

vature estimates. In particular, our semiparametric model shows the most significant heterogeneity

35While we could incorporate random coefficients on product characteristics Xjt, we decided not to do so for several
reasons. First, when we attempted to estimate the specification with random coefficients on product characteristics by
exploiting the differentiation instruments, the estimated parameters for the standard deviation of random coefficients
were imprecise and close to zero. This could have been due to the limited number of markets in our application (i.e.,
T = 8), which made it difficult to estimate random coefficient parameters. Secondly, the baseline specification of
the semiparametric model does not incorporate random coefficients. Our objective is to contrast the baseline model
with the parametric specification of the income effect term, thereby highlighting the advantages of the nonparametric
approach.
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in the curvature estimates. This is because the curvature of our semiparametric model depends on

the second-order derivative of the income effect function f ′′(y − p), which we flexibly estimate via

a sieve method.36

Figure 9: Relationship between Own-price Elasticity and Demand Curvature
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6 Policy Simulations: Pass-Through and Merger Analysis

In this section, we conduct two counterfactual simulations using our estimated semiparametric

model. The first analyzes the ES program-particularly the pass-through of the subsidy and its

welfare impacts. As discussed in Section 2.4, our demand model can flexibly capture the curvature

of the demand function, which has key implications for the pass-through. Second, we conduct

a merger simulation between two automobile manufacturers. In both simulations, we compare

the results from different demand specifications, namely (1) semiparametric model, (2) parametric

random coefficient model, and (3) linear logit model. Below, we introduce a supply model in Section

6.1 to estimate the marginal costs of car models and simulate counterfactual equilibria. We then

discuss results from counterfactual simulations in Sections 6.2 and 6.3.

36More precisely, the second-order derivative of the demand is given by

∂2sj
∂p2j

=

∫ ¶
sij(1− sij)(1− 2sij)

[
f ′(y − pj)

]2
+ sij(1− sij)f ′′(yi − pj)

©
dG(yi).

The second-order derivative term f ′′(yi − pj) is equal to zero in a parametric random coefficient model.
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6.1 Supply Model

We consider a model of Bertrand competition with differentiated products, as in BLP and Nevo

(2001). Automobile manufacturers are multiproduct oligopolists that compete in prices. The profit

for manufacturer f in year t is given as follows:

πft =
∑
j∈Jft

(pjt −mcjt)qjt (pet ) , (6.1)

where mcjt is the marginal cost of car model j in year t. We assume a constant marginal cost.

The variable pet is a vector of effective prices in market t and defined as pet = {pejt}j∈Jt . Note

that we distinguish between the price charged by a firm (i.e., pjt) and the effective price (i.e., pejt)

that reflects the tax and subsidy. It should be remembered that the effective price is given by

pejt = (1 +ρjt)pjt+Tjt−ESjt in Equation (5.1). Lastly, Jft denotes the set of car models produced

by manufacturer f in year t.

The first-order condition (FOC) of the profit maximization problem is as follows:

∂πft
∂pjt

= qjt (pet ) + (1 + ρjt)
∑
l∈Jft

(plt −mclt)
∂qlt
∂pejt

= 0, ∀j ∈ Jft (6.2)

By stacking the FOCs across all products, we obtain the equilibrium conditions for year t in the

following matrix notation:

q̃t(p
e
t )−Dt(p

e
t )(pt −mct) = 0, (6.3)

where q̃t = (
q1,t

1+ρ1t
, · · · , qJt,t

1+ρJt,t
)′, pt = (p1,t, · · · , pJt,t)′, and mct = (mc1,t, · · · ,mcJt,t)′. The matrix

Dt is a Jt×Jt matrix defined as Dt(p
e
t ) = Ωt�S(pet ). Here the operator � denotes the element-by-

element multiplication of matrices. Ωt, meanwhile, denotes the ownership structure of car models

sold in market t. More specifically, the (i, j) element of the matrix Ωt takes a value of 1 if product

i and j are sold by the same manufacturer, and 0 otherwise. Lastly, the (i, j) element of matrix

S(pet ) is defined as −∂qjt(p
e
t )

∂peit
.

To use this supply model for simulations, we must first estimate the model primitives, namely

the demand function and marginal costs. The demand function is estimated in Section 5. We use

the equilibrium conditions to estimate the vector of marginal cost mct. Specifically, given that the
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matrix S(pet ) can be calculated from the demand estimates, we can invert Equation (6.3) to back

out the marginal costs mct.

Given the estimated model primitives, we conduct a simulation analysis by numerically solving

Equation (6.3) for a vector of equilibrium prices. To do so, we use the algorithm proposed by

Morrow and Skerlos (2011).37

6.2 Simulation 1: Pass-through Analysis of Feebate Policy

In this subsection, we conduct a pass-through analysis of eco-car subsidies, simulating the market

equilibrium when the subsidy for eligible automobile models is removed (i.e., ESjt = 0 for all j in

Equation (5.1)). We then calculate how much of the subsidy can be attributed to consumers and

producers. Note that our simulation aims to highlight the practical value of our demand framework

in the pass-through analysis rather than fully evaluating the Japanese feebate policy.38

First, we report the pass-through rate in Table 8. We define the pass-through rate (PTRjt) as

the ratio of changes in effective price that consumers face to the amount of ES:

PTRjt =
pe
′
jt − pejt
ESjt

,

where pe
′
jt indicates the simulated price in the counterfactual case without ES. The table shows the

results based on three different demand specifications: (1) semiparametric model, (2) parametric

income effect, and (3) linear logit. We find that the average pass-through rate under our semi-

parametric model and parametric random coefficient model are similar (1.194 and 1.196), while

the rate implied by a linear logit model is 0.991. In addition, the pass-through rate under a linear

logit model is bounded by 1. This result is consistent with Weyl and Fabinger (2013)’s notion

that log-concave demand always predicts an incomplete pass-through (i.e., the pass-through rate is

below 1).

37The algorithm of Morrow and Skerlos (2011) is used in pyBLP package provided by Conlon and Gortmaker (2020)
38We abstract away several institutional features in our analysis. First, the actual policy began in the middle of the

year (i.e., in April), but our data is annual, so we cannot fully account for this point. Thus, we assume that the first
phase of the ES policy was implemented from April 2009 to September 2010, and that the second ran from December
2011 to January 2013 (see Konishi and Zhao (2017), who analyzed the policy using quarterly data). Second, in the
policy’s first phase, consumers could apply for the ES program with a higher amount of subsidy if they scrapped an
existing vehicle older than 13 years. To analyze the scrap subsidy, we must incorporate consumer heterogeneity for
the age of the owned vehicle. For an evaluation of the feebate policy with full consideration of the scrap subsidy, see
Kitano (2022).
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Table 8: Price Change Due to Ecocar Subsidy

Mean SD p25 Median p75

A: PTRjt
Semi-parametric model 1.194 0.080 1.140 1.174 1.252
Parametric income effect 1.196 0.046 1.166 1.194 1.229
Linear logit 0.991 0.009 0.980 0.993 0.999

B: Percentage Change in Effective Price
Semi-parametric model -5.968% 2.434% 3.997% 5.701% 7.532%
Parametric income effect -5.940% 2.287% 4.068% 5.832% 7.232%
Linear logit -4.928% 1,788% 3.500% 4.852% 5.932%

Note: PTRjt = (pe
′
jt − pejt)/ESjt. Percentage change in effective price due to ecocar

subsidy is defined as 100 ∗ (pe
′
jt − pejt)/pe

′
jt. p25 and p75 represent the 25th and 75th

percentiles, respectively.

To examine the difference between our semiparametric model and parametric random coefficient

specification, Figure 10 shows the relationship between the pass-through rate and the effective price

for three different demand specifications. While the average pass-through rates across baseline and

parametric models are similar, the baseline specification shows more significant heterogeneity in

the pass-through rate. Specifically, it predicts a higher pass-through rate for cheaper products

and a lower rate for more expensive products. Such heterogeneity in our semiparametric model is

consistent with the pattern in the curvature estimates discussed in Figure 9.

Figure 10: Pass-Through Rate of the Eco-Car Subsidy
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Note: The car models whose effective price is less than JPY 8 million are plotted.

We now quantify the policy impact on social welfare. We calculate the changes in producer

surplus (PSt), tax revenues (TRt), and consumer surplus measured by compensation variation
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(CV).39 For a simple logit and a parametric random coefficient model, we use Small and Rosen

(1981) to calculate the consumer surplus.40 For the semiparametric specification, we compute the

compensating variation following Dagsvik and Karlström (2005).41 Table 9 reports the results

under three demand specifications. Regardless of the specification, the ES policy improves the

total welfare. In particular, the increase in consumer surplus exceeds the fiscal expenditure of the

subsidy. This improvement is likely due to the subsidy mitigating the pre-existing distortion caused

by market power (Buchanan 1969; Fowlie et al. 2016).

Table 9: Welfare Impact of Ecocar Subsidy

2009 2010 2012 Average

(i) Semi-parametric model
Consumer Surplus 302.2 406.4 571.7 426.8
Profit 97.9 129.5 174.5 134.0
Tax Revenue -143.4 -197.4 -274.4 -205.1
Total Welfare 256.7 338.6 471.8 355.7

(ii) Parametric income effect
Consumer Surplus 179.6 250.2 344.1 258.0
Profit 101.8 136.6 187.1 141.8
Tax Revenue -136.7 -188.3 -261.2 -195.4
Total Welfare 144.7 198.5 269.9 204.4

(iii) Linear logit
Consumer Surplus 153.0 211.5 293.7 219.4
Profit 138.9 191.7 263.7 198.1
Tax Revenue -144.2 -198.1 -277.5 -206.6
Total Welfare 147.7 205.1 279.9 210.9

Note: The unit is JPY 1 Billion. The average of 2009, 2010, and
2012 is reported in the final column.

Table 10 reports the distribution of compensating valuation. The linear logit model in Panel

(iii) removes consumer heterogeneity, and thus predicts the uniform impacts on consumer surplus.

However, the other two models incorporate the consumer heterogeneity into the model and thus

predict the heterogenous impacts of the policy change. Overall, we find a large standard deviation

in Panels (i) and (ii), which implies significant heterogeneity in policy effects among consumers. The

CV implied by the simple logit model in Panel (iii) is between the median and the 75th percentile

39The producer surplus is PSt =
∑
f∈F

∑
j∈Jft

(pjt − mcjt)qjt(p
e
t) and the tax revenue is given by TRt =∑

f∈F
∑
j∈Jft

(pjtρjt + Tjt − ESjt)qjt(pe
t). Note that F denotes the set of automobile manufacturers.

40For a parametric random coefficient model, we use the log-sum formula of Small and Rosen (1981) to each
consumer with different income level yit. We then aggregate individual consumer surplus to calculate the aggregate
consumer surplus.

41See Appendix H for further details on how CV is calculated. We aggregate the individual CV across different
consumers in Table 9.
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of the distribution under our model with a nonparametric income effect.

Table 10: The Distribution of CV by Year (Ecocar Subsidy)

Mean SD p10 p25 Median p75 p90

(i) Semi-parametric model
2009 5,715 11,705 0 0 6 3,280 26,511
2010 7,616 15,822 0 0 14 4,202 34,570
2012 10,554 20,189 0 0 28 8,024 50,137

(ii) Parametric income effect
2009 3,397 7,302 0 8 229 2,525 11,375
2010 4,689 10,390 0 13 301 3,280 15,390
2012 6,351 12,442 1 27 605 5,667 22,124

(iii) Linear logit
2009 2,893 NA NA NA NA NA NA
2010 3,963 NA NA NA NA NA NA
2012 5,423 NA NA NA NA NA NA

Note: The unit is JPY. p10, p25, p75, and p90 represent the 10th, 25th, 75th, and 90th percentile
points respectively. Under a linear Logit specification, there is no heterogeneity in CV.

To highlight the difference between Panels (i) and (ii), Figure 11 shows the CV distribution in

a parametric income effect and semiparametric models. The distribution of CV under a parametric

income effect specification is right-skewed, but bimodal under a semiparametric model. Indeed,

the semiparametric model implies that the policy has heterogenous implications on consumers.

This result suggests the importance of flexibly incorporating the income effect when analyzing the

distributional effects of the policy on consumers.

6.3 Simulation 2: Merger Simulation

We conduct a simulation analysis of a hypothetical merger between Toyota and Honda. As in the

pass-through analysis in Section 6.2, we compare the price effects of a merger under three demand

specifications. To evaluate a merger’s impact, we solve the counterfactual outcome by solving the

equilibrium conditions under an alternative ownership structure. Specifically, we set the ownership

matrix Ωt such that the car models produced by Toyota and Honda are owned by the same firm.

The hypothetically merged firm chooses prices to maximize the joint profit. Note that we use the

estimated marginal costs and do not consider potential efficiency gains from the merger. Here, we

focus on the anti-competitive effects, which are of primary interest in the antitrust practice and are

determined by the demand structure.
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Figure 11: Distribution of CV in 2012
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Note: The common logarithm scale is applied to the x-axis. To avoid missing observations, we add 1 to the estimated

CVs.

Table 11 presents the simulation results. In Panel (D), the price effects of a merger are the

smallest in a linear logit model. While the product prices increase by 2.7% for Toyota and 7.3%

for Honda under a semiparametric specification, a simple logit demand predicts increases of 0.6%

for Toyota and 1.4% for Honda.

We now investigate the underlying mechanism that drives the difference in the predicted merger

effects. As discussed in Farrell and Shapiro (2010), the price effects of a merger can be considered

to be, in the first order, the pass-through of the increase in the opportunity costs. After the merger,

the merged firm takes into account the opportunity cost of losing the partner’s profits. This measure

is referred to as the upward pricing pressure (UPP), defined in greater detail below. The price effect

of a merger is determined by the extent to which the increase in opportunity cost is reflected in

the final price. Therefore, the key to understanding the merger effect is the pass-through rate and

the UPP implied from each demand specification.

As seen in the pass-through analysis, the estimated pass-through rate is much higher in the

semiparametric and parametric random coefficient models than in the simple logit model. This is

largely due to the difference in the estimated curvature of the demand curve.

To investigate the difference in the UPP and how it relates to the differential merger effect,
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Table 11: Descriptive Statistics of Merger Simulation

Mean SD p25 Median p75

A: Observed Effective Price (Unit: JPY 1 million)
(1) Toyota 2.76 2.01 1.76 2.18 2.98
(2) Honda 2.51 1.27 1.46 2.33 2.98

B: Effective Price Change in % (Semi-parametric)
(1) Toyota 2.68% 0.60% 2.38% 2.74% 3.08%
(2) Honda 7.30% 0.86% 6.78% 7.46% 7.93%

C: Effective Price Change in % (Parametric income effect)
(1) Toyota 1.87% 0.33% 1.74% 1.94% 2.10%
(2) Honda 5.32% 0.51% 4.99% 5.51% 5.71%

D: Effective Price Change in % (Linear Logit)
(1) Toyota 0.59% 0.25% 0.42% 0.57% 0.74%
(2) Honda 1.37% 0.62% 0.91% 1.23% 1.82%

Note: p25 and p75 represent the 25th and 75th percentiles.

we compute the UPP following Farrell and Shapiro (2010) and Miller et al. (2016). For ease of

explanation, let us consider a merger between two firms, A and B. Firm A’s products are denoted

by {1, . . . , JA}, while those of firm B are denoted by {JA + 1, . . . , JA + JB}. Then, the UPP for

firm A is defined as follows:42


UPP1

...

UPPJA

 = −


∂q1
∂p1

· · · ∂qJA
∂p1

...
. . .

...

∂q1
∂pJA

· · · ∂qJA
∂pJA


−1 

∂qJA+1

∂p1
· · · ∂qJA+JB

∂p1
...

. . .
...

∂qJA+1

∂pJA
· · · ∂qJA+JB

∂pJA




pJA+1 −mcJA+1

...

pJA+JB −mcJA+JB

 .
(6.4)

The first two terms in the right-hand side is a matrix of diversion ratios from firm A to firm B.

The product of the diversion ratios and the markup of firm B captures an opportunity cost created

by the merger. We compute the UPP evaluated at the price without the merger.

Table 12 reports the descriptive statistics of the UPP across different demand specifications.

The linear logit model implies the lowest UPP among three specifications. Combined with the

lower pass-through rate, the linear logit model predicts the smallest merger effects. Comparing the

semiparametric and parametric BLP models, the UPP under the former is greater than that under

the latter. While both models are, on average, similar in the pass-through rate (as discussed in

Section 6.2), the difference in the UPP leads to the differential merger effects.

42For the full derivation of the above equation, see Appendix F.
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Table 12: Descriptive Statistics of UPP

Mean SD p25 Median p75

Semi-parametric model
(1) Toyota 4.96 1.32 3.99 4.77 5.89
(2) Honda 13.05 5.32 8.30 12.71 16.40

Parametric income effect
(1) Toyota 3.48 1.14 2.67 3.24 4.16
(2) Honda 9.82 4.44 6.01 9.43 12.55

Linear logit
(1) Toyota 1.21 0.15 1.15 1.18 1.38
(2) Honda 2.61 0.28 2.52 2.72 2.88

Note: p25 and p75 represent the 25th and 75th per-
centiles. Unit is JPY 10 thousand.

Lastly, Table 13 shows the welfare effects of the merger. Our semiparametric model predicts

that the merger will result in a larger loss of consumer surplus and total welfare, which reflects the

larger price effects in the semiparametric specification.

Table 13: Welfare Impact of Merger

Semi-parametric model Parametric income effect Linear logit

Consumer Surplus -240.1 -108.9 -33.8
Profit 35.9 21.9 1.6
Tax Revenue -11.8 -12.9 -2.2
Total Welfare -216.0 -99.9 -34.4

Note: The average welfare impact from 2006 to 2013 is reported, as measured in billion JPY.

7 Discussion and Robustness in Empirical Application

This section discusses the robustness of our empirical application. We first examine the use of

rental (rather than regular) prices of automobiles in our empirical application in Section 7.1. We

then discuss the implications of omitting the budget constraint in our demand model in Section

7.2.
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7.1 Rental Price

Contrary to many discrete choice demand models, our model explicitly considers the presence of

budget constraints. In our empirical application, we use the annual household income and the

effective automobile prices after considering tax and subsidy. However, given that people tend to

finance vehicle purchases either with auto loans or savings, our specification of budget constraints

may not reflect the actual budget constraint faced by consumers.

To mitigate this concern, we construct the rental price of automobiles and use it in our estimation

and simulation analysis. Some previous papers (e.g., Bento et al. (2009)) have used rental (rather

than purchase) price in their demand models. We follow Abe (2023) to construct the rental price

of automobiles, the details of which are presented in Appendix G. After constructing the rental

price, we re-run the estimation and simulation analysis to assess the robustness against the choice

of price measure.

Table 14 shows the comparison of the results of the pass-through analysis in Section 6.2. Re-

gardless of whether using the original definition of price (i.e., effective price) or the rental price,

the estimated pass-through rates are quite similar. These results suggest that our demand model

is robust to the choice of price measure (i.e., the purchase price or the rental price).

Table 14: Price Change Due to Ecocar Subsidy (Original Model versus Rental Price)

Mean SD p25 Median p75

A: PTRjt
Semi-parametric model (Original) 1.194 0.080 1.140 1.174 1.252
Semi-parametric model (Rental Price) 1.194 0.074 1.141 1.181 1.239

B: Percentage Change in Effective Price
Semi-parametric model (Original) −5.97% 2.43% −4.00% −5.70% −7.53%
Semi-parametric model (Rental Price) −5.97% 2.47% −3.97% −5.72% −7.30%

Note: p25 and p75 represent the 25th and 75th percentiles. See Appendix G for how to derive PTR in the
model using rental price.

7.2 Role of Budget Constraint

This subsection addresses the implications of a budget constraint for the pass-through analysis.

In the empirical application, we approximate the income effect term f(y − p) by the inverse of

Bernstein polynomial function, given by f(y − p) = −1∑K
k=1 πkb

K
k (y−p)

where limx→0 f(x) = −∞. As

discussed in Section 5.3, this specification yields the continuous demand function, which is vital for
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supply-side analysis. However, one might view this as an unnecessary restriction that could affect

the implications of empirical analysis.43 To address this concern, we conduct the pass-through

analysis under an alternative specification of the demand model where the budget constraint is

omitted.

We consider the following demand model without the budget constraint:

sjt =

∫
sijt(yit)dGt(yit) (7.1)

where

sijt(yit) =
exp (f(yit − pjt) + β′Xjt + ξjt)

exp(f(yit)) +
∑Jt

k=1 exp (f(yit − pkt) + β′Xkt + ξjt)
. (7.2)

In contrast to the baseline specification of Equation (2.10), the individual choice probability does

not incorporate the budget constraint 1{yit > pjt}, implying that the individual choice probability

sijt can be non-zero even when pjt < yit (i.e., the budget constraint for a consumer with income

level yit is violated) and thus be continuous at pjt = yit. Regarding the income effect term f(y−p),

we adopt the approximation by a Bernstein polynomial f(yit − pjt) =
∑K

k=0 πkb
K
k (yit − pjt) ≡

ψK(yit − pjt)′Π. We set K = 4 as in the baseline specification. We also normalize the support of

yit − pjt to [0, 1].44

The advantage of this specification is that the demand model becomes a continuous function

for a price, as it does not include the budget constraint (see Appendix E for details). Therefore,

in contrast to the baseline specification, the inverse of the Bernstein polynomial is unnecessary

for maintaining the continuity of demand function. However, the disadvantage is that the model

may not align with the underlying utility maximization behavior, as consumers might violate the

budget constraint. Therefore, under this specification, conducting a coherent welfare analysis (i.e.,

calculating consumer welfare) becomes challenging.

Table 15 presents the simulated pass-through rates under two specifications: the baseline model

and the model without a budget constraint. Although the baseline model predicts, on average, a

43We conduct a Monte Carlo experiment using the inverse of the Bernstein polynomial rather than the regular
Bernstein polynomial as we did in Section 4. Since the inverse is restricted to satisfy limy−p→0 f(y − p) = −∞, we
could not recover the true functional form with normalization of f(y− p) = 0 (see DGP1-3 introduced in Section 4.)
The detailed result is available upon request.

44Footnote 15 explains the normalization of the support when we consider the presence of budget constraints.
Without the budget constraint where yit − pjt can take a negative value as an argument of the function f(·), we
construct zmin by zmin = mini,j,t{yit − pjt} and use it to construct the standardized variable.
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slightly higher pass-through rate, the overall pattern remains quite similar. Notably, regardless of

the specification chosen, the model consistently predicts the over-pass-through of the subsidy.

Table 15: Price Change Due to Ecocar Subsidy (Original Model versus No Budget Constraint)

Mean SD p25 Median p75

A: PTRjt
Semi-parametric model (Original) 1.194 0.080 1.140 1.174 1.252
Semi-parametric model (No Budget Consraint) 1.105 0.081 1.041 1.075 1.157

B: Percentage Change in Effective Price
Semi-parametric model (Original) −5.97% 2.43% −4.00% −5.70% −7.53%
Semi-parametric model (No Budget Constraint) −5.36% 1.69% −4.05% −5.17% −6.15%

Note: See note in Table 8.

We conclude the discussion by highlighting the trade-offs associated with the choice of approxi-

mation methods. In the baseline specification of empirical analysis, we choose to impose the budget

constraint, thus adopting the inverse of the Bernstein polynomial. We do this to conduct a compre-

hensive demand and supply analysis, including counterfactual simulations and the measurement of

consumer welfare. On the other hand, if one’s interest lies in recovering the demand function with

minimal assumptions, using regular Bernstein polynomials without imposing the budget constraint

might be a preferable approach. However, we should be aware that such a model may not align

with the underlying principle of utility maximization, and it does not allow us to measure consumer

welfare. Additionally, omitting the budget constraint may lead to biased demand estimates (see,

e.g., Pesendorfer et al. (2023)).

8 Conclusion

This paper proposes a new empirical framework for a differentiated product demand model with a

nonparametric income effect. The proposed model is a semiparametric model with endogeneity. We

estimate the model by combining the NFP algorithm proposed by BLP and a sieve approximation

with shape restriction. Our Monte Carlo simulations suggest significant gains in estimating the

nonparametric term of the income effect by incorporating the shape restriction. We also apply

our empirical framework to Japanese automobile data, demonstrating the importance of a flexible

income effect specification. In our application of the pass-through analysis and the merger simula-

tion, our demand model offers qualitatively and quantitatively different results than the parametric
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models.
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Appendix for Online Publication

Demand Estimation with Flexible Income Effect:

An Application to Pass-through and Merger Analysis

Shuhei Kaneko and Yuta Toyama

A Additional Tables and Figures

Table A1: Regression of Automobile Prices

(1) (2) (3)

Eco-car subsidy -1.7724 -1.1479
(0.1492) (0.1641)

Specific Tax 3.2525 2.2680
(0.2704) (0.3011)

HP/WT 10.1043 9.2747 9.4539
(1.2233) (1.2221) (1.1976)

MPG -0.0038 -0.0007 -0.0004
(0.0025) (0.0025) (0.0024)

Car Size 0.9052 1.0271 1.0064
(0.2566) (0.2527) (0.2467)

AT/CVT 0.1177 0.0774 0.0892
(0.0335) (0.0181) (0.0210)

Hybrid dummy 0.6985 0.8521 0.7982
(0.1843) (0.1732) (0.1785)

Constant -5.0243 -6.1898 -5.9895
(1.8419) (1.8100) (1.7712)

FE Product and Year Product and Year Product and Year

Observations 1,302 1,302 1,302

Notes: We run the regression pejt = βXjt + γESjt + γTaxjt + ujt, where pejt is the effective price
(including tax), Xjt is a vector of product characteristics, ESjt is the amount of eco-car subsidy,
and Taxjt is the amount of auto-related taxes excluding acquisition tax. We also add the product
and the year-fixed effects.
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Table A2: Estimation Results of Parametric Income Model

Point Est. Standard Error

Constant -27.507 1.194
HPWT 26.820 4.907
MPG 0.070 0.009
Size 2.745 0.228
AT/CVT 0.362 0.399
pejt
yi

22.176 4.678

Observations 1,322

Notes: The model includes year fixed effects, firm fixed effects, minicar dummy and hybrid car
dummy.

Figure A1: Comparison of Price Elasticities across Different Choice of the order of Bernstein
Polynomial K

Panel A: K = 3 and K = 4 Panel B: K = 4 and K = 5
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B Income Distribution

Income distribution is obtained from the Comprehensive Survey of Living Conditions (CSLC),

which is conducted annually in Japan by the Ministry of Health, Labor, and Welfare (MHLW).

Specifically, we used the summary of CSLC annual data circulated by MHLW in which the median

and the average income of the surveyed population are reported. In our analysis, we assume that

the annual income follows a log-normal distribution (= LN(µt, σ
2
t )). The parameters are calibrated

using the property that E(y) = exp(µ + σ2/2) and Median(y) = exp(µ) if y follows LN(µ, σ2).

Table A3 shows the nominal and real (i.e., deflated by 2015 CPI) average and median income and

the parameters of income distribution from 2006 to 2013.

Table A3: Descriptive Statistics of Annual Income Data from CSLC

Year Average(a) Median(a) Average
(Deflated)

Median
(Deflated)

µt
(b) σt

(b)

2006 566.8 451 583.1276 463.9918 6.1399 0.6761
2007 556.2 448 572.2222 460.9053 6.1332 0.6578
2008 547.5 427 555.2738 433.0629 6.0709 0.7051
2009 549.6 438 565.4321 450.6173 6.1106 0.6738
2010 538.0 427 557.5130 442.4870 6.0924 0.6798
2011 548.2 432 569.2627 448.5981 6.1061 0.6902
2012 537.2 432 558.4200 449.0644 6.1072 0.6602
2013 528.9 415 547.5155 429.6066 6.0629 0.6964

Notes: The unit used in columns 2–5 is JPY 10 thousands. (a): Average and median income are sourced
from the summary of CSLC circulated by MHLW. (b) The parameters of the log-normal distribution is
calculated based on deflated average/median income.
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C Tax Policy in Japanese Automobile Market

This appendix explains the tax system in the Japanese automobile market. Under the Japanese

vehicle tax system, consumers must pay three types of car tax: (1) acquisition tax, (2) weight tax,

and (3) automobile tax. The acquisition tax is an ad valorem tax, while the other two are specific

taxes that depend on the weight and engine displacement of the car model.

First, the automobile acquisition tax is an ad valorem tax collected by each prefecture, which

charges 5% (3%) of the purchase price before March 2014 (after April 2014). Note that the au-

tomobile acquisition tax was abolished in October 2019, with a new taxation system called the

environmental performance discount (Kankyo-Seino-Wari in Japanese) being rolled out in Octo-

ber 2019. Under this new system, at most 3% of the purchase price is imposed depending on the

automobile’s fuel efficiency.

Second, the rate of the automobile weight tax was JPY 12, 600 per 0.5 tons of vehicle weight

before April 2010, JPY 10,000 per ton from April 2010 to April 2012, and JPY 8,200 per ton after

May 2012.

Third, the automobile tax is an additional tax collected by each prefecture. In recent years,

the size of the automobile tax has been modified several times. For instance, the automobile tax

on minicars was hiked from JPY 7, 200 to JPY 10, 800, while the range of the automobile tax on

normal cars was raised from JPY 29, 500–111, 000 to JPY 25, 000–110, 000 in October 2019.

Furthermore, in 2009, a tax reduction was introduced for car models that satisfy criteria based

on fuel efficiency and emissions standards. This tax reduction scheme is called the eco-car tax

reduction (hereafter ETR). The changes in the tax reduction rates and the criteria of the ETR

program are described in Table A4. The eligibility for the tax reduction was revised in 2012, 2014,

and 2015. For instance, from 2009 to 2011, the acquisition tax on new cars that met the 2010 fuel

efficiency standards by 15% or better and received a four-star rating for the emission standard in

2005 was cut by 50%, while the automobile tax on these cars was reduced by 25%.
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Table A4: Eligibility for Tax Reduction Under the ETR program

Acquisition tax Weight tax Automobile tax
Normal Minicar

(1) 2009−2011
EV, FCV, Plug-in Hybrid, etc. Exempted Exempted 50% cut

No exemption
125% or above 2010 standard 75% cut 75% cut 50% cut
115% or above 2010 standard 50% cut 50% cut 25% cut

(2) 2012−2013
EV, FCV, Plug-in Hybrid, etc. Exempted Exempted 50% cut

No exemption120% or above 2015 standard Exempted Exempted 50% cut
110% or above 2015 standard 75% cut 75% cut 50% cut
100% or above 2015 standard 50% cut 50% cut 25% cut

(3) 2014
EV, FCV, Plug-in Hybrid, etc. Exempted Exempted 75% cut

No exemption120% or above 2015 standard Exempted Exempted 75% cut
110% or above 2015 standard 80% cut 75% cut 50% cut
100% or above 2015 standard 60% cut 50% cut 50% cut

(4) 2015−2016
EV, FCV, Plug-in Hybrid, etc. Exempted Exempted 75% cut 75% cut

120% or above 2020 standard Exempted Exempted 75% cut 50% cut
110% or above 2020 standard 80% cut 75% cut 75% cut 25% cut
100% of above 2020 standard 60% cut 50% cut 75% cut 25% cut
110% above 2015 standard 40% cut 25% cut 50% cut

No exemption
105% above 2015 standard 20% cut 25% cut 50% cut

Notes: For all tax reductions, automobiles must receive a four-star rating for the emission standards
in 2005. ETR: Eco-car Tax Reduction, ES: Eco-Car Subsidy, EV: Electronic Vehicle, FCV: Fuel-
Cell Vehicle.
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D Alternative Way to Impose Shape Restriction

To impose the shape restriction on the income effect function f(x) in a sieve approximation, we

impose the condition that πk ≤ πk+1 for all k in the Bernstein polynomial. This is a sufficient,

rather necessary, condition for the function f(x) to be weakly-increasing. An alternative approach

would be to impose the restriction on a grid of points on the support. We investigate this approach

and compare the result with the baseline approach (i.e., imposing πk ≤ πk+1 ∀k) in our empirical

application. Specifically, we consider an alternative constraint that the derivative of the Bernstein

polynomial is positive at 999 points of an even grid (i.e., 0.1 percentage tile to 99.9 percentage

tile) in our optimization of the sieve GMM. Figure A2 shows the estimated own-price elasticity

from these two approaches. Overall, both approaches produce quite similar values of the own-price

elasticity. In terms of computation speed, the baseline approach is three times faster than the

alternative approach. Based on this finding, we suggest that directly imposing the constraint on

sieve coefficient πk is computationally superior without compromising the generality.

Figure A2: Comparison of Estimation Results of Different Shape Restrictions

Note: Estimated own-price elasticity under two possible ways to impose shape restriction on f(y − p) is plotted:

our baseline approach (i.e., imposing increasing sieve coefficients πk < πk+1 for all k) on the x-axis and alternative

approach (imposing positive derivative at 999 even grid points) on the y-axis.
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E Numerical challenge

In our empirical analysis in Section 5, we impose the additional restriction of limx→0 f(x) = −∞

on the income effect function. This appendix provides a detailed explanation of this restriction by

employing a numerical example.

In our demand model with budget constraint, the aggregate demand function is given by

sjt =

∫
sijt(yit)dGt(yit)

where

sijt(yit) =
1{yit ≥ pjt} · exp (f(yit − pjt) + β′Xjt + ξjt)

exp(f(yit)) +
∑Jt

k=1 1{yit ≥ pkt} · exp (f(yit − pkt) + β′Xkt + ξjt)
.

Since we are not able to obtain the analytical formula for the above integral, we rely on a Monte

Carlo simulation:

sjt =
1

R

R∑
r=1

sijt(yr) (E.1)

=
1

R

R∑
r=1

1{yr ≥ pjt} · exp (f(yr − pjt) + β′Xjt + ξjt)

exp(f(yr)) +
∑Jt

k=1 1{yr ≥ pkt} · exp (f(yr − pkt) + β′Xkt + ξjt)
(E.2)

where {yr}Rr=1 is the set of simulated income randomly drawn from the income distribution Gt(y).

The key issue is that due to the presence of indicator function 1{yr ≥ pjt} in Monte Carlo

integral, the market-level demand sjt is discontinuous when pjt = yr. We can see this point

graphically in Figure A3. We plot the demand curve and the profit function of a particular product

with respect to its own price, holding other prices fixed. In the upper-panel of Figure A3, we set

the income effect function as f(y− p) = 30(y− p) implying that f(0) = 0 and thus the exponential

function of the numerator exp (f(yr − pjt) + β′Xjt + ξjt) is a positive number when pjt = yr. As

the upper-left panel shows, the demand curve is discontinuous at the points where the price is

equal to the level of simulated income. Such discontinuities in demand affect the shape of the profit

function, as shown in the upper-right panel. The profit function is no longer a smooth function

with respect to prices, making the numerical analysis of finding a profit-maximizing price difficult.

To avoid this issue, we decided to impose the restriction that limx→0 f(x) = −∞. Under this
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restriction, the exponential function of the numerator exp (f(yr − pjt) + β′Xjt + ξjt) goes to 0 as

pjt → yr. We graphically illustrate this point by considering another specification for the income

effect function

f(y − p) = − 1

0.2(y − p)
,

which is similar to the one we adopt in an empirical analysis of the main body. As the lower

panel shows, both the demand and profit function is smooth with respect to its prices. Therefore,

imposing such additional restrictions is crucial to using our framework for a numerical simulation

of solving the pricing game.

Figure A3: Illustration of Numerical Challenge
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F Derivation of the Upward Pricing Pressure

This appendix shows the derivation of the upward pricing pressure (UPP). As in the main body,

consider a merger between two firms A and B. Firm A’s products are denoted by {1, . . . , JA},

while those of firm B are denoted by {JA + 1, . . . , JA + JB}.

Before the merger, the system of FOCs for firm A is given by


q̃1(p

e
t )

...

q̃JA(pet )

+


∂q1
∂p1

· · · ∂qJA
∂p1

. . .

∂q1
∂pJA

∂qJA
∂pJA




p1 −mc1
...

pJA −mcJA

 = 0, (F.1)

or, equivalently,
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...

pJA −mcJA
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. . .

∂q1
∂pJA

∂qJA
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q̃1(p
e
t )

...

q̃JA(pet )

 . (F.2)

.

After the merger with firm B, firm A considers the impact of its pricing on the profit of products

owned by firm B. The system of FOCs are now given by


q̃1(p

e
t )

...

q̃JA(pet )

+


∂q1
∂p1

· · · ∂qJA
∂p1

. . .

∂q1
∂pJA

∂qJA
∂pJA




p1 −mc1
...

pJA −mcJA



+


∂qJA+1

∂p1
· · · ∂qJA+JB

∂p1

. . .

∂qJA+1

∂pJA

∂qJA+JB
∂pJA




pJA+1 −mcJA+1

...

pJA+JB −mcJA+JB

 = 0

Rewriting this, we define the UPP as


p1 − (mc1 + UPP1)

...

pJA − (mcJA + UPPJA)

 = (−1)


∂q1
∂p1

· · · ∂qJA
∂p1

. . .

∂q1
∂pJA

∂qJA
∂pJA


−1 

q̃1(p
e
t )

...

q̃JA(pet )

 , (F.3)
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where the UPP for firm A is defined as follows:


UPP1

...

UPPJA

 = −


∂q1
∂p1

· · · ∂qJA
∂p1

...
. . .

...

∂q1
∂pJA

· · · ∂qJA
∂pJA


−1 

∂qJA+1

∂p1
· · · ∂qJA+JB

∂p1
...

. . .
...

∂qJA+1

∂pJA
· · · ∂qJA+JB

∂pJA




pJA+1 −mcJA+1

...

pJA+JB −mcJA+JB

 .
(F.4)

Note the vector of UPP is considered as the additional cost for firm A.

G Construction of Rental Price

This appendix explains the details of constructing the rental price. We follow Abe (2023) to

construct the rental price of automobiles (See Footnote 5 of the paper). The rental price of an

automobile is comprised of three components: (1) depreciation, (2) loan interests, and (3) specific

tax. We explain each component in detail below.

First, the depreciation is computed based on the statutory service life of automobiles as stipu-

lated by the National Tax Agency: 6 years for a normal car and 4 years for a minicar:

djt =

 [(1 + ρjt)pjt − ESjt] /6 (Normal Car)

[(1 + ρjt)pjt − ESjt] /4 (Minicar)

where ρjt is the rate of the ad-valorem tax, including consumption tax (5% during the sample

period) and ESjt is ecocar subsidy.

The second component is the loan interest. Loans are primarily categorized into financial

institution loans and dealer loans, with the former typically ranging from approximately 1.5% to

3.0%, and the latter ranging from approximately 6.0% to 9.0%. Here, we assume the loan interest

to be 3% for simplicity:

ljt = ((1 + ρjt)pjt − ESjt) ∗ 0.03

In addition to the previous two components, car buyers have to pay specific taxes, that is,

weight tax (wjt) and automobile tax (ajt). Since the buyers have to pay the weight tax for the first

three years (until the first vehicle inspection) in a lump sum at the time of initial registration of
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the vehicle, we divide the amount of weight tax paid at the time of purchase by 3:

t′jt = ajt +
wjt
3

In sum, the rental price that the buyer faces at the time of purchase can be written as the

function of the price set by the firm:

prjt = djt + ljt + t′jt = λjt(1 + ρjt)pjt − λjtESjt + t′jt

where λjt = 1/6 + 0.03 for normal cars and 1/4 + 0.03 for minicars. Figure A4 shows the rela-

tionship between the rental price and effective prices. Given the construction explained above, the

relationship is almost linear. The rental price is approximately 20% of the effective price.

Reflecting the construction of rental price, the pass-through rate in this model (See second row

in panel A and B of Table 14) is calculated by PTRjt =
pr
′
jt−prjt
λjtESjt

, where pr
′
jt indicates the simulated

rental price in the counterfactual case without ES.

Figure A4: Relationship Between Rental Price and Effective Price
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H Measurement of Compensating Variation

H.1 Overview

We measure changes in consumer welfare associated with a price change using compensating varia-

tion (hereafter CV), which is the amount of money a consumer would need to be indifferent to the

change. Let the baseline price be p and the counterfactual price p′. The indirect utility is defined

as follows:

W (p, y) = max
j∈Ji

Vij , (H.1)

where Vij = vj(pj , y) + εij and εij has the joint cumulative distribution F (ε1, · · · , εJt). In our

application, vj(pj , y) = f(y − pj) + βXj + ξj holds.

We denote the individual-level CV using cv, which is defined as

W (p, y) = W (p′, y − cv). (H.2)

CV should be interpreted as a random variable because it depends on the idiosyncratic shock

(ε1, · · · , εJt). Consequently, we focus on the mean CV E(cv) as a welfare measure.

If ones assumes the linear utility, measuring CV can be relatively straightforward when using

the log-sum formula proposed by Small and Rosen (1981). In our paper, we use the theoretical

results produced by Dagsvik and Karlström (2005) to calculate E(cv).45 Using their method, the

computation of CV reduces to a sum of a one-dimensional integral, which can be easily calculated

using numerical methods. Moreover, when the idiosyncratic shock ε follows the i.i.d. Type I

extreme-value distribution, the calculation of the integral becomes much simpler.

To explain the method proposed by Dagsvik and Karlström (2005), we first define the random

expenditure function Y (p, u) by using the following equation:

u = W (p, Y (p, u)). (H.3)

The expenditure function Y (p, u) is interpreted as the income level under which the consumer can

achieve the utility level of u when the price vector is p.

45Griffith et al. (2018) also use this method to derive the mean CV in their application.
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The CV can be defined as

cv = y − Y (p′,W (p, y)). (H.4)

Using this equation, the expected CV E(cv) can be obtained by calculating E[Y (p′,W (p, y))].46

Dagsvik and Karlström (2005) formulates useful theorems to derive the distribution function of the

random variable Y (p, u). Below, we present an overview of this derivation.

H.2 Derivation of the general case

First, we consider the joint distribution of the random expenditure Y (p, u) and the optimal choice

J(p, y), which is defined by

J(p, y) = arg max
j∈J

vj(pj , y) + εij .

Theorem 3 of Dagsvik and Karlström (2005) derives the formal expression of this joint distri-

bution:

P
(
Y (p′,W (p, y)) > z, J(p, y) = i)

=


∫
Fi(u− h1(p1, y, p′1, z), · · · , u− hJ(pJ , y, p

′
J , z))du if 0 < z < yi(pi, y, p

′
i)

0 if z ≥ yi(pi, y, p′i)

where Fi denotes the partial derivative of the cumulative distribution F (ε1, · · · , εJt) with respect

to i-th input. hj(pj , y, p
′
j , z) is defined by

hj(pj , y, p
′
j , z) ≡ max

{
vj(pj , y), vj(p

′
j , z)

}
and yj(pj , y, p

′
j) is defined by the following equation.

vj(pj , y) = vj(p
′
j , yj(pj , y, p

′
j)).

Intuitively speaking, yj(pj , y, p
′
j) is the income level needed to obtain the utility level of vj(pj , y)

when the price is p′j .

46This is because by substituting (H.4) to (H.2), we get W (p, y) = W (p′, Y (p′,W (p, y))), where the equality must
hold by the definition of the expenditure function.
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We now derive the marginal distribution of the random expenditure Y (p, u), which will be used

to calculate E[Y (p′,W (p, y))]. Corollary 2 of Dagsvik and Karlström (2005) has shown that the

marginal distribution is derived as follows:47

P(Y (p′,W (p, y)) > z) =∑
i∈J

Ii(pi, y, p
′
i, z)×

∫
Fi(u− h1(p1, y, p′1, z), · · · , u− hJ(pJ , y, p

′
J , z))du.

where the indicator function Ii(pi, y, p
′
i, z) is defined as

Ii(pi, y, p
′
i, z) =

 1 if vi(pi, y) > vi(p
′
i, z)

0 otherwise
(H.5)

Using the marginal distribution, we now calculate the expectation E(Y (p′,W (p, y))) by

E(Y (p′,W (p, y))) =

∫ ∞
0

Y (p′,W (p, y)) · dP(Y (p′,W (p, y)) ≤ z)

=

∫ ∞
0

P(Y (p′,W (p, y)) > z)dz (H.6)

=
∑
i∈J

∫ yi(pi,y,p
′
i)

0

∫
Fi(u− h1(p1, y, p′1, z), · · · , u− hJ(pJ , y, p

′
J , z))dudz (H.7)

The second equality uses Lemma 1 of Dagsvik and Karlström (2005).48

H.3 Special Case: i.i.d. Type-1 Extreme Value Distribution

When the idiosyncratic shock follows Type-I extreme value distribution, the integral of choice

probability has a closed form expression (McFadden, 1981) 49. Therefore, in this case, the joint

47The marginal distribution can be obtained by adding up the joint distribution for goods i, thus satisfying
Ij(pi, y, p

′
i, z) = 1. Note that z < yi(pi, y, p

′
i) is equivalent to vj(pj , y) > vj(p

′
j , z).

48Let G be the cumulative distribution function of a random variable x. Lemma 1 of Dagsvik and Karlström (2005)
shows that, for any α ≥ 1,

∫∞
0
xαdG(x) = α

∫∞
0
xα−1(1−G(x))dx. We apply this lemma when α = 1.

49This is a special case of the Generalized Extreme Value (GEV) model in which the choice probability of j-th
alternative can be expressed as Pj =

∫ +∞
−∞ Fj(vj + εj − v1, · · · , vj + εj − vJ)dεj = yjGj/G using some function

G(ev1 , ev2 , · · · , evJ ) having the following properties: (i) G(ev1 , ev2 , · · · , evJ ) ≥ 0 for all j, (ii) G is linearly homo-
geneous (i.e. G(ρev1 , ρev2 , · · · , ρevJ ) = ρG(ev1 , ev2 , · · · , evJ )), (iii) limvk→∞G = +∞ for all k, and (iv) n-th order
derivative is non-negative if n is odd, and non-positive if n is even. When the error term follows Type-I extreme
value distribution, the function G corresponds to G =

∑
j∈J e

vj . See McFadden (1981) for details.

62



distribution of expenditure function and the choice can be rewritten as, for z < yi(pi, y, p
′
i),

P(Y (p′,W (p, y)) > z, J(p, y) = i)

=

∫
Fi(u− h1(p1, y, p′1, z), u− h2(p2, y, p′2, z), · · · , u− hJ(pJ , y, p

′
J , z))du

=
exp(hi(pi, y, p

′
i, z))∑

k∈J exp(hk(pk, y, p
′
k, z))

=
exp(vi(pi, y))∑

k∈J exp(max{vk(p′k, z), vk(pk, y)})

The final equality holds by the definition of hi(pi, y, p
′
i, z) and the restriction of z < yi(pi, y, p

′
i).

50

Based on this result, the probability distribution of the expenditure function can be derived as

follows:

P(Y (p′,W (p, y)) > z) =
∑
i∈J

Ii(pi, y, p
′
i, z)

exp(vi(p, y))∑
k∈J exp(max{vk(p′k, z), vk(pk, y)})

Finally, by (H.7), the expectation of expenditure function is

E(Y (p′,W (p, y)) =
∑
i∈J

∫ yi(pi,y,p
′
i)

0

exp(vi(pi, y))∑
k∈J exp(max{vk(p′k, z), vk(pk, y)})

dz,

which is the final result of Corollary 5 of Dagsvik and Karlström (2005).

As we argued at the beginning of this section, the computation of E(cv) reduces to the sum of a

one-dimensional integral under the standard assumptions (i.e. the error term follows Type-I extreme

value distribution). Furthermore, in our counterfactual analysis, because none of the automobile

characteristics change except for the price, yi(pi, y, p
′
i) can be derived by yi(pi, y, p

′
i) = y + p′i − pi.

Finally, by applying the technique of numerical integration (e.g., Gauss-Legendre quadrature), we

can compute the expectation of expenditure function and the expectation of CV.

50z < yi(pi, y, p
′
i) is equivalent to vi(pi, y) > vi(p

′
i, z). Thus, hi(pi, y, p

′
i, z) = max {vi(pi, y), vi(p

′
i, z)} = vi(pi, y).
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